TY - JOUR
T1 - Methods to evaluate the inhibition of TTR fibrillogenesis induced by small ligands
AU - Arsequell, G.
AU - Planas, A.
PY - 2012/5
Y1 - 2012/5
N2 - Transthyretin is an amyloidogenic protein associated with several amyloidosis, namely familial amyloidotic polyneuropathy, familial amyloidotic cardiomyopathy, and central nervous system selective amyloidosis, familial rare diseases caused by single point mutants, and senile systemic amyloidosis associated with wild-type TTR. The current model for amyloid fibril formation involves initial dissociation of the native TTR tetramer into non-native monomers which associate into soluble oligomers and protofibrils that evolve to mature amyloid deposits. A number of efforts are addressed to identify small molecules targeting the formation, clearance, or assembly of toxic aggregates as a promising therapeutic strategy to treat amyloidosis. This review classifies and summarizes the different strategies and assays that have been developed in vitro, ex vivo, and in vivo as tools to screen libraries of compounds or to test compounds from rational design in the search of drug candidates for the treatment of TTR-associated amyloidosis. Depending on the property they measure, the assays are classified as: a) in vitro assays that monitor protein aggregation and/or fibril formation, b) in vitro assays that monitor binding to native protein, c) ex vivo TTR plasma selectivity assays, d) in vitro assays for tetrameric TTR stabilization, e) cellular assays, and f) animal models to evaluate amyloidosis inhibitors.
AB - Transthyretin is an amyloidogenic protein associated with several amyloidosis, namely familial amyloidotic polyneuropathy, familial amyloidotic cardiomyopathy, and central nervous system selective amyloidosis, familial rare diseases caused by single point mutants, and senile systemic amyloidosis associated with wild-type TTR. The current model for amyloid fibril formation involves initial dissociation of the native TTR tetramer into non-native monomers which associate into soluble oligomers and protofibrils that evolve to mature amyloid deposits. A number of efforts are addressed to identify small molecules targeting the formation, clearance, or assembly of toxic aggregates as a promising therapeutic strategy to treat amyloidosis. This review classifies and summarizes the different strategies and assays that have been developed in vitro, ex vivo, and in vivo as tools to screen libraries of compounds or to test compounds from rational design in the search of drug candidates for the treatment of TTR-associated amyloidosis. Depending on the property they measure, the assays are classified as: a) in vitro assays that monitor protein aggregation and/or fibril formation, b) in vitro assays that monitor binding to native protein, c) ex vivo TTR plasma selectivity assays, d) in vitro assays for tetrameric TTR stabilization, e) cellular assays, and f) animal models to evaluate amyloidosis inhibitors.
KW - Amyloid inhibitor
KW - Amyloidosis
KW - Drug screening
KW - HTS
KW - Kinetic inhibitors
KW - Transthyretin
UR - http://www.scopus.com/inward/record.url?scp=84860697106&partnerID=8YFLogxK
UR - https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=pure_univeritat_ramon_llull&SrcAuth=WosAPI&KeyUT=WOS:000303130200005&DestLinkType=FullRecord&DestApp=WOS_CPL
U2 - 10.2174/092986712800269281
DO - 10.2174/092986712800269281
M3 - Article
C2 - 22471983
AN - SCOPUS:84860697106
SN - 0929-8673
VL - 19
SP - 2343
EP - 2355
JO - Current Medicinal Chemistry
JF - Current Medicinal Chemistry
IS - 15
ER -