Tailored mechanical performance of fused filament fabricated 316L steel components through printing parameter optimization

Héctor García de la Torre, Marco A. Pérez, Giovanni Gómez-Gras

Producció científica: Article en revista indexadaArticleAvaluat per experts

Resum

This research focuses on Metal Material Extrusion (MMEX) using BASF Ultrafuse® Stainless Steel 316L filament, aiming to model the influence of infill parameters to optimize material usage without compromising final reliability and safety. Experimental variations in air gap, layer height, and sample orientation are analyzed for their effects on dimensional shrinkage, morphology, microstructure, and mechanical performance. The study proposes a reliable non-linear negative exponential model for data analysis, and characterization techniques such as X-ray diffraction, microscopy, and standardized mechanical testing are conducted. Results reveal a substantial influence of raster spacing, with sparse configurations demonstrating slightly reduced linear shrinkage and non-uniform pore distribution. Tensile and flexural tests highlight distinct behaviors in solid and sparse configurations, emphasizing the latter's potential for offering advantages such as reduced weight and cost savings, and setting sparse samples as a viable alternative for designs with extensive bed-parallel surfaces. The findings contribute to the development of novel design-for-manufacturing strategies for functional, structural elements using MMEX and offer insights for optimizing the fabrication process by understanding the role of raster deposition.

Idioma originalAnglès
Número d’article104141
RevistaTheoretical and Applied Fracture Mechanics
Volum128
DOIs
Estat de la publicacióPublicada - de des. 2023

Fingerprint

Navegar pels temes de recerca de 'Tailored mechanical performance of fused filament fabricated 316L steel components through printing parameter optimization'. Junts formen un fingerprint únic.

Com citar-ho