TY - JOUR
T1 - Structure-activity relationships of serotonergic 5-MeO-DMT derivatives
T2 - insights into psychoactive and thermoregulatory properties
AU - Puigseslloses, Pol
AU - Nadal-Gratacós, Núria
AU - Ketsela, Gabriel
AU - Weiss, Nicola
AU - Berzosa, Xavier
AU - Estrada-Tejedor, Roger
AU - Islam, Mohammad Nazmul
AU - Holy, Marion
AU - Niello, Marco
AU - Pubill, David
AU - Camarasa, Jordi
AU - Escubedo, Elena
AU - Sitte, Harald H.
AU - López-Arnau, Raúl
N1 - Publisher Copyright:
© The Author(s) 2024.
PY - 2024/8
Y1 - 2024/8
N2 - Recent studies have sparked renewed interest in the therapeutic potential of psychedelics for treating depression and other mental health conditions. Simultaneously, the novel psychoactive substances (NPS) phenomenon, with a huge number of NPS emerging constantly, has changed remarkably the illicit drug market, being their scientific evaluation an urgent need. Thus, this study aims to elucidate the impact of amino-terminal modifications to the 5-MeO-DMT molecule on its interactions with serotonin receptors and transporters, as well as its psychoactive and thermoregulatory properties. Our findings demonstrated, using radioligand binding methodologies, that all examined 5-MeO-tryptamines exhibited selectivity for 5-HT1AR over 5-HT2AR. In fact, computational docking analyses predicted a better interaction in the 5-HT1AR binding pocket compared to 5-HT2AR. Our investigation also proved the interaction of these compounds with SERT, revealing that the molecular size of the amino group significantly influenced their affinity. Subsequent experiments involving serotonin uptake, electrophysiology, and superfusion release assays confirmed 5-MeO-pyr-T as the most potent partial 5-HT releaser tested. All tested tryptamines elicited, to some degree, the head twitch response (HTR) in mice, indicative of a potential hallucinogenic effect and mainly mediated by 5-HT2AR activation. However, 5-HT1AR was also shown to be implicated in the hallucinogenic effect, and its activation attenuated the HTR. In fact, tryptamines that produced a higher hypothermic response, mediated by 5-HT1AR, tended to exhibit a lower hallucinogenic effect, highlighting the opposite role of both 5-HT receptors. Moreover, although some 5-MeO-tryptamines elicited very low HTR, they still act as potent 5-HT2AR agonists. In summary, this research offers a comprehensive understanding of the psychopharmacological profile of various amino-substituted 5-MeO-tryptamines, keeping structural aspects in focus and accumulating valuable data in the frame of NPS. Moreover, the unique characteristics of some 5-MeO-tryptamines render them intriguing molecules as mixed-action drugs and provide insight within the search of non-hallucinogenic but 5-HT2AR ligands as therapeutical agents.
AB - Recent studies have sparked renewed interest in the therapeutic potential of psychedelics for treating depression and other mental health conditions. Simultaneously, the novel psychoactive substances (NPS) phenomenon, with a huge number of NPS emerging constantly, has changed remarkably the illicit drug market, being their scientific evaluation an urgent need. Thus, this study aims to elucidate the impact of amino-terminal modifications to the 5-MeO-DMT molecule on its interactions with serotonin receptors and transporters, as well as its psychoactive and thermoregulatory properties. Our findings demonstrated, using radioligand binding methodologies, that all examined 5-MeO-tryptamines exhibited selectivity for 5-HT1AR over 5-HT2AR. In fact, computational docking analyses predicted a better interaction in the 5-HT1AR binding pocket compared to 5-HT2AR. Our investigation also proved the interaction of these compounds with SERT, revealing that the molecular size of the amino group significantly influenced their affinity. Subsequent experiments involving serotonin uptake, electrophysiology, and superfusion release assays confirmed 5-MeO-pyr-T as the most potent partial 5-HT releaser tested. All tested tryptamines elicited, to some degree, the head twitch response (HTR) in mice, indicative of a potential hallucinogenic effect and mainly mediated by 5-HT2AR activation. However, 5-HT1AR was also shown to be implicated in the hallucinogenic effect, and its activation attenuated the HTR. In fact, tryptamines that produced a higher hypothermic response, mediated by 5-HT1AR, tended to exhibit a lower hallucinogenic effect, highlighting the opposite role of both 5-HT receptors. Moreover, although some 5-MeO-tryptamines elicited very low HTR, they still act as potent 5-HT2AR agonists. In summary, this research offers a comprehensive understanding of the psychopharmacological profile of various amino-substituted 5-MeO-tryptamines, keeping structural aspects in focus and accumulating valuable data in the frame of NPS. Moreover, the unique characteristics of some 5-MeO-tryptamines render them intriguing molecules as mixed-action drugs and provide insight within the search of non-hallucinogenic but 5-HT2AR ligands as therapeutical agents.
KW - Body-temperature
KW - Neurotransmitter transporters
KW - 5-ht1a receptor
KW - Tryptamines
KW - Substances
KW - Activation
KW - Discovery
KW - Foxy
KW - Rats
KW - 5-methoxy-n,n-diisopropyltryptamine
UR - http://www.scopus.com/inward/record.url?scp=85187645151&partnerID=8YFLogxK
U2 - 10.1038/s41380-024-02506-8
DO - 10.1038/s41380-024-02506-8
M3 - Article
AN - SCOPUS:85187645151
SN - 1359-4184
VL - 29
SP - 2346
EP - 2358
JO - Molecular Psychiatry
JF - Molecular Psychiatry
IS - 8
ER -