Pilot Ionosonde Network for Identification of Traveling Ionospheric Disturbances

Bodo Reinisch, Ivan Galkin, Anna Belehaki, Vadym Paznukhov, Xueqin Huang, David Altadill, Dalia Buresova, Jens Mielich, Tobias Verhulst, Stanimir Stankov, Estefania Blanch, Daniel Kouba, Ryan Hamel, Alexander Kozlov, Ioanna Tsagouri, Angelos Mouzakis, Mauro Messerotti, Murray Parkinson, Mamoru Ishii

Producció científica: Article en revista indexadaArticleAvaluat per experts

35 Cites (Scopus)


Traveling ionospheric disturbances (TIDs) are the ionospheric signatures of atmospheric gravity waves. Their identification and tracking is important because the TIDs affect all services that rely on predictable ionospheric radio wave propagation. Although various techniques have been proposed to measure TID characteristics, their real-time implementation still has several difficulties. In this contribution, we present a new technique, based on the analysis of oblique Digisonde-to-Digisonde “skymap” observations, to directly identify TIDs and specify the TID wave parameters based on the measurement of angle of arrival, Doppler frequency, and time of flight of ionospherically reflected high-frequency radio pulses. The technique has been implemented for the first time for the Network for TID Exploration project with data streaming from the network of European Digisonde DPS4D observatories. The performance is demonstrated during a period of moderate auroral activity, assessing its consistency with independent measurements such as data from auroral magnetometers and electron density perturbations from Digisondes and Global Navigation Satellite System stations. Given that the different types of measurements used for this assessment were not made at exactly the same time and location, and that there was insufficient coverage in the area between the atmospheric gravity wave sources and the measurement locations, we can only consider our interpretation as plausible and indicative for the reliability of the extracted TID characteristics. In the framework of the new TechTIDE project (European Commission H2020), a retrospective analysis of the Network for TID Exploration results in comparison with those extracted from Global Navigation Satellite System total electron content-based methodologies is currently being attempted, and the results will be the objective of a follow-up paper.

Idioma originalAnglès
Pàgines (de-a)365-378
Nombre de pàgines14
RevistaRadio Science
Estat de la publicacióPublicada - de març 2018


Navegar pels temes de recerca de 'Pilot Ionosonde Network for Identification of Traveling Ionospheric Disturbances'. Junts formen un fingerprint únic.

Com citar-ho