TY - JOUR
T1 - Extent of flow recirculation governs expression of atherosclerotic and thrombotic biomarkers in arterial bifurcations
AU - Martorell, Jordi
AU - Santomá, Pablo
AU - Kolandaivelu, Kumaran
AU - Kolachalama, Vijaya B.
AU - Melgar-Lesmes, Pedro
AU - Molins, José J.
AU - Garcia, Lawrence
AU - Edelman, Elazer R.
AU - Balcells, Mercedes
PY - 2014/7/1
Y1 - 2014/7/1
N2 - Aims Atherogenesis, evolution of plaque, and outcomes following endovascular intervention depend heavily on the unique vascular architecture of each individual. Patient-specific, multiscale models able to correlate changes in microscopic cellular responses with relevant macroscopic flow, and structural conditions may help understand the progression of occlusive arterial disease, providing insights into how to mitigate adverse responses in specific settings and individuals. Methods and results Vascular architectures mimicking coronary and carotid bifurcations were derived from clinical imaging and used to generate conjoint computational meshes for in silico analysis and biocompatible scaffolds for in vitro models. In parallel with three-dimensional flow simulations, geometrically realistic scaffolds were seeded with human smooth muscle cells (SMC) or endothelial cells and exposed to relevant, physiological flows. In vitro surrogates of endothelial health, atherosclerotic progression, and thrombosis were locally quantified and correlated best with an quantified extent of flow recirculation occurring within the bifurcation models. Oxidized low-density lipoprotein uptake, monocyte adhesion, and tissue factor expression locally rose up to three-fold, and phosphorylated endothelial nitric oxide synthase and Krüppel-like factor 2 decreased up to two-fold in recirculation areas. Isolated testing in straight-tube idealized constructs subject to static, oscillatory, and pulsatile conditions, indicative of different recirculant conditions corroborated these flow-mediated dependencies. Conclusions Flow drives variations in vascular reactivity and vascular beds. Endothelial health was preserved by arterial flow but jeopardized in regions of flow recirculation in a quasi-linear manner. Similarly, SMC exposed to flow were more thrombogenic in large recirculating regions. Health, thrombosis, and atherosclerosis biomarkers correlate with the extent of recirculation in vascular cells lining certain vascular geometries.
AB - Aims Atherogenesis, evolution of plaque, and outcomes following endovascular intervention depend heavily on the unique vascular architecture of each individual. Patient-specific, multiscale models able to correlate changes in microscopic cellular responses with relevant macroscopic flow, and structural conditions may help understand the progression of occlusive arterial disease, providing insights into how to mitigate adverse responses in specific settings and individuals. Methods and results Vascular architectures mimicking coronary and carotid bifurcations were derived from clinical imaging and used to generate conjoint computational meshes for in silico analysis and biocompatible scaffolds for in vitro models. In parallel with three-dimensional flow simulations, geometrically realistic scaffolds were seeded with human smooth muscle cells (SMC) or endothelial cells and exposed to relevant, physiological flows. In vitro surrogates of endothelial health, atherosclerotic progression, and thrombosis were locally quantified and correlated best with an quantified extent of flow recirculation occurring within the bifurcation models. Oxidized low-density lipoprotein uptake, monocyte adhesion, and tissue factor expression locally rose up to three-fold, and phosphorylated endothelial nitric oxide synthase and Krüppel-like factor 2 decreased up to two-fold in recirculation areas. Isolated testing in straight-tube idealized constructs subject to static, oscillatory, and pulsatile conditions, indicative of different recirculant conditions corroborated these flow-mediated dependencies. Conclusions Flow drives variations in vascular reactivity and vascular beds. Endothelial health was preserved by arterial flow but jeopardized in regions of flow recirculation in a quasi-linear manner. Similarly, SMC exposed to flow were more thrombogenic in large recirculating regions. Health, thrombosis, and atherosclerosis biomarkers correlate with the extent of recirculation in vascular cells lining certain vascular geometries.
KW - Atherosclerosis
KW - Endothelium
KW - Flow
KW - Geometry
KW - Thrombosis
UR - http://www.scopus.com/inward/record.url?scp=84903994927&partnerID=8YFLogxK
UR - https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=pure_univeritat_ramon_llull&SrcAuth=WosAPI&KeyUT=WOS:000339664400007&DestLinkType=FullRecord&DestApp=WOS_CPL
U2 - 10.1093/cvr/cvu124
DO - 10.1093/cvr/cvu124
M3 - Article
C2 - 24841070
AN - SCOPUS:84903994927
SN - 0008-6363
VL - 103
SP - 37
EP - 46
JO - Cardiovascular Research
JF - Cardiovascular Research
IS - 1
ER -