Ex-vivo mechanical sealing properties and toxicity of a bioadhesive patch as sealing system for fetal membrane iatrogenic defects

Talita Micheletti, Elisenda Eixarch, Sergio Berdun, Germán Febas, Edoardo Mazza, Salvador Borrós, Eduard Gratacos

Producció científica: Article en revista indexadaArticleAvaluat per experts

7 Cites (Scopus)

Resum

Preterm prelabor rupture of membranes (PPROM) is the most frequent complication of fetal surgery. Strategies to seal the membrane defect created by fetoscopy aiming to reduce the occurrence of PPROM have been attempted with little success. The objective of this study was to evaluate the ex-vivo mechanical sealing properties and toxicity of four different bioadhesives integrated in semi-rigid patches for fetal membranes. We performed and ex-vivo study using term human fetal membranes to compare the four integrated patches composed of silicone or silicone-polyurethane combined with dopaminated-hyaluronic acid or hydroxypropyl methylcellulose (HPMC). For mechanical sealing properties, membranes were mounted in a multiaxial inflation device with saline, perforated and sealed with the 4 combinations. We measured bursting pressure and maximum pressure free of leakage (n = 8). For toxicity, an organ culture of membranes sealed with the patches was used to measure pyknotic index (PI) and lactate dehydrogenase (LDH) concentration (n = 5). All bioadhesives achieved appropriate bursting pressures, but only HPMC forms achieved high maximum pressures free of leakage. Concerning toxicity, bioadhesives showed low PI and LDH levels, suggesting no cell toxicity. We conclude that a semi-rigid patch coated with HPMC achieved ex-vivo sealing of iatrogenic defects in fetal membranes with no signs of cell toxicity. These results warrant further research addressing long-term adhesiveness and feasibility as a sealing system for fetoscopy.

Idioma originalAnglès
Número d’article18608
RevistaScientific Reports
Volum10
Número1
DOIs
Estat de la publicacióPublicada - 1 de des. 2020

Fingerprint

Navegar pels temes de recerca de 'Ex-vivo mechanical sealing properties and toxicity of a bioadhesive patch as sealing system for fetal membrane iatrogenic defects'. Junts formen un fingerprint únic.

Com citar-ho