Cyclic Homo- and Heterohalogen Di-λ3-diarylhalonium Structures

Wei W. Chen, Margalida Artigues, Mercè Font-Bardia, Ana B. Cuenca, Alexandr Shafir

Producció científica: Article en revista indexadaArticleAvaluat per experts


In the context of the ever-growing interest in the cyclic diaryliodonium salts, this work presents synthetic design principles for a new family of structures with two hypervalent halogens in the ring. The smallest bis-phenylene derivative, [(C6H4)2I2]2+, was prepared through oxidative dimerization of a precursor bearing the ortho-disposed iodine and trifluoroborate groups. We also report, for the first time, the formation of cycles containing two different halogen atoms. These present two phenylenes linked by hetero-(I/Br) or -(I/Cl) halogen pairs. This approach was also extended to the cyclic bis-naphthylene derivative [(C10H6)2I2]2+. The structures of these bis-halogen(III) rings were further assessed through X-ray analysis. The simplest cyclic phenylene bis-iodine(III) derivative features the interplanar angle of ∼120°, while a smaller angle of ∼103° was found for the analogous naphthylene-based salt. All dications form dimeric pairs through a combination of π-π and C-H/π interactions. As the largest member of the family, a bis-I(III)-macrocycle was also assembled using the quasi-planar xanthene backbone. Its geometry enables the two iodine(III) centers to be bridged intramolecularly by two bidentate triflate anions. In a preliminary manner, the interaction of the phenylene- and naphthalene-based bis-iodine(III) dications with a new family of rigid bidentate bis-pyridine ligands was studied in solution and the solid state, with an X-ray structure showing the chelating donor bonding to just one of the two iodine centers.

Idioma originalAnglès
Pàgines (de-a)13796-13804
Nombre de pàgines9
RevistaJournal of the American Chemical Society
Estat de la publicacióPublicada - 28 de juny 2023


Navegar pels temes de recerca de 'Cyclic Homo- and Heterohalogen Di-λ3-diarylhalonium Structures'. Junts formen un fingerprint únic.

Com citar-ho