A fast methodology to rank adsorbents for CO2 capture with temperature swing adsorption

A. Gutierrez-Ortega, R. Nomen, J. Sempere, J. B. Parra, M. A. Montes-Morán, R. Gonzalez-Olmos

Producció científica: Article en revista indexadaArticleAvaluat per experts

30 Cites (Scopus)


A new methodology for evaluating different commercial adsorbents for CO2 capture using temperature swing adsorption (TSA) has been developed. The screening method is based on thermogravimetric analysis (TGA) combined with differential scanning calorimetry (DSC) to study the cyclic behavior of adsorbents paying attention on CO2 production and desorption energy. CO2 production and desorption energy were determined for commercial zeolites using a simulated flue gas (15% CO2 / 85% N2 v/v). Binderless zeolites had better CO2 production and lower desorption energy on TSA cycles than their analog binder-based zeolites. The zeolite with the highest CO2 production (0.077 kgCO2/kgads٠h) and the lowest desorption energy (0.56 kWh/kgCO2) was the 13XBL binderless zeolite. On the other side, the 5A zeolites (binder and binderless) had the lowest CO2 production (0.046–0.054 kgCO2/kgads٠h) and the highest desorption energy (0.78–0.93 kWh/kgCO2) among zeolites. Results obtained demonstrated that the proposed methodology is a good basis for the fast selection of the best adsorbent and for the selection of the adsorption and desorption cycling temperatures in CO2 capture processes through TSA.

Idioma originalAnglès
Número d’article134703
RevistaChemical Engineering Journal
Volum435 (Part I)
Estat de la publicacióPublicada - 1 de maig 2022


Navegar pels temes de recerca de 'A fast methodology to rank adsorbents for CO2 capture with temperature swing adsorption'. Junts formen un fingerprint únic.

Com citar-ho