How Gibbs distributions may naturally arise from synaptic adaptation mechanisms. A model-based argumentation

B. Cessac, H. Rostro, J. C. Vasquez, T. Viéville

Producción científica: Artículo en revista indizadaArtículorevisión exhaustiva

11 Citas (Scopus)

Resumen

This paper addresses two questions in the context of neuronal networks dynamics, using methods from dynamical systems theory and statistical physics: (i) How to characterize the statistical properties of sequences of action potentials ("spike trains") produced by neuronal networks? and; (ii) what are the effects of synaptic plasticity on these statistics? We introduce a framework in which spike trains are associated to a coding of membrane potential trajectories, and actually, constitute a symbolic coding in important explicit examples (the so-called gIF models). On this basis, we use the thermodynamic formalism from ergodic theory to show how Gibbs distributions are natural probability measures to describe the statistics of spike trains, given the empirical averages of prescribed quantities. As a second result, we show that Gibbs distributions naturally arise when considering "slow" synaptic plasticity rules where the characteristic time for synapse adaptation is quite longer than the characteristic time for neurons dynamics.

Idioma originalInglés
Páginas (desde-hasta)565-602
Número de páginas38
PublicaciónJournal of Statistical Physics
Volumen136
N.º3
DOI
EstadoPublicada - ago 2009
Publicado de forma externa

Huella

Profundice en los temas de investigación de 'How Gibbs distributions may naturally arise from synaptic adaptation mechanisms. A model-based argumentation'. En conjunto forman una huella única.

Citar esto