Fabrication of bioactive surfaces by plasma polymerization techniques using a novel acrylate-derived monomer

Laia Francesch, Elena Garreta, Mercedes Balcells, Elazer R. Edelman, Salvador Borrós

Producción científica: Artículo en revista indizadaArtículorevisión exhaustiva

38 Citas (Scopus)

Resumen

Material coating of surfaces can enhance receptivity for cells and biological compounds. Existing plasma coating technologies and possible materials are limited. A new polymer from pentafluorophenyl methacrylate (PFM) monomer was synthesized, and was plasma enhanced chemical vapor deposited on silicon wafers. The optimal plasma polymerization parameters for the PFM monomer and its copolymerization with the cross-linking agents 1,7-octadiene and 1,4-butanediol divinyl ether co-monomers were established. All the resulting polymer coatings leave the labile pentafluorophenyl group on the surface, enabling a rapid reaction with an amino-terminated biotin ligand and allowing layer-by-layer self-assembly of biotin-streptavidin. In addition, the deposited polymer layers showed an extremely flat morphology with a nanoscale average roughness. This approach provides an easy means of obtaining functionalized surfaces which can enhance and control the biocompatibility of bulk materials. Merging the versatility of plasma polymerization processes, via simple monomers and reaction conditions, with biological platforms that enable target of cell adhesion brings us closer to the ultimate goal of controlling cell function through structured surfaces for their application in tissue engineering.

Idioma originalInglés
Páginas (desde-hasta)605-611
Número de páginas7
PublicaciónPlasma Processes and Polymers
Volumen2
N.º8
DOI
EstadoPublicada - 11 oct 2005

Huella

Profundice en los temas de investigación de 'Fabrication of bioactive surfaces by plasma polymerization techniques using a novel acrylate-derived monomer'. En conjunto forman una huella única.

Citar esto