A stabilized finite element method for the mixed wave equation in an ALE framework with application to diphthong production

Oriol Guasch, Marc Arnela, Ramon Codina, Hector Espinoza

Producción científica: Artículo en revista indizadaArtículorevisión exhaustiva

35 Citas (Scopus)

Resumen

Working with the wave equation in mixed rather than irreducible form allows one to directly account for both, the acoustic pressure field and the acoustic particle velocity field. Indeed, this becomes the natural option in many problems, such as those involving waves propagating in moving domains, because the equations can easily be set in an arbitrary Lagrangian-Eulerian (ALE) frame of reference. Yet, when attempting a standard Galerkin finite element solution (FEM) for them, it turns out that an inf-sup compatibility constraint has to be satisfied, which prevents from using equal interpolations for the approximated acoustic pressure and velocity fields. In this work it is proposed to resort to a subgrid scale stabilization strategy to circumvent this condition and thus facilitate code implementation. As a possible application, we address the generation of diphthongs in voice production.

Idioma originalInglés
Páginas (desde-hasta)94-106
Número de páginas13
PublicaciónActa Acustica united with Acustica
Volumen102
N.º1
DOI
EstadoPublicada - 1 ene 2016

Huella

Profundice en los temas de investigación de 'A stabilized finite element method for the mixed wave equation in an ALE framework with application to diphthong production'. En conjunto forman una huella única.

Citar esto