The pathophysiology of triose phosphate isomerase dysfunction in alzheimer's disease

Marta Tajes, Biuse Guivernau, Eva Ramos-Fernández, Mònica Bosch-Morató, Ernest Palomer, Francesc X. Guix, Francisco J. Muñoz

Research output: Indexed journal article Reviewpeer-review

22 Citations (Scopus)

Abstract

Alzheimer's disease (AD), the most prevalent neurodegenerative disease worldwide, has two main hallmarks: extracellular deposits of amyloid ßpeptide (Aß) and intracellular neurofibrillary tangles composed by tau protein. Most AD cases are sporadic and are not dependent on known genetic causes; aging is the major risk factor for AD. Therefore, the oxidative stress has been proposed to initiate the uncontrolled increase in Aß production and also to mediate the Aß's deleterious effects on brain cells, especially on neurons from the cortex and hippocampus. The production of free radicals in the presence of nitric oxide (NO) yields to the peroxynitrite generation, a very reactive agent that nitrotyrosinates the proteins irreversibly. The nitrotyrosination produces a loss of protein physiological functions, contributing to accelerate AD progression. One of the most nitrotyrosinated proteins in AD is the enzyme triosephosphate isomerase (TPI) that isomerizes trioses, regulating glucose consumption by both phosphate pentose and glycolytic pathways and thereby pyruvate production. Hence, any disturbance in the glucose supply could affect the proper brain function, considering that the brain has a high rate of glucose consumption. Besides this directly affecting to the energetic metabolism of the neurons, TPI modifications, such as mutation or nitrotyrosination, increase methylglyoxal production, a toxic precursor of advanced glycated end-products (AGEs) and responsible for protein glycation. Moreover, nitro-TPI aggregates interact with tau protein inducing the intraneuronal aggregation of tau. Here we review the relationship between modified TPI and AD, highlighting the relevance of this protein in AD pathology and the consequences of protein nitro-oxidative modifications.

Original languageEnglish
Pages (from-to)43-51
Number of pages9
JournalHistology and Histopathology
Volume28
Issue number1
Publication statusPublished - Jan 2013
Externally publishedYes

Keywords

  • Alzheimer's disease
  • Methylglyoxal
  • Nitrotyrosination
  • Oxidative stress
  • Triosephosphate isomerase

Fingerprint

Dive into the research topics of 'The pathophysiology of triose phosphate isomerase dysfunction in alzheimer's disease'. Together they form a unique fingerprint.

Cite this