Abstract
This paper presents a text classifier for automatically tagging the sentiment of input text according to the emotion that is being conveyed. This system has a pipelined framework composed of Natural Language Processing modules for feature extraction and a hard binary classifier for decision making between positive and negative categories. To do so, the Semeval 2007 dataset composed of sentences emotionally annotated is used for training purposes after being mapped into a model of affect. The resulting scheme stands a first step towards a complete emotion classifier for a future automatic expressive text-to-speech synthesizer.
Original language | English |
---|---|
Pages (from-to) | 516-519 |
Number of pages | 4 |
Journal | Proceedings of the Annual Conference of the International Speech Communication Association, INTERSPEECH |
Publication status | Published - 2009 |
Event | 10th Annual Conference of the International Speech Communication Association, INTERSPEECH 2009 - Brighton, United Kingdom Duration: 6 Sept 2009 → 10 Sept 2009 |
Keywords
- Emotion tagging
- Natural language processing
- Sentiment classification
- Text categorization