Local solutions of maximum likelihood estimation in quantum state tomography

Douglas S. Gonçalves, Márcia A. Gomes-Ruggiero, Carlile Lavor, Osvaldo Jiménez Farías, P. H. Souto Ribeiro

Research output: Indexed journal article Articlepeer-review

12 Citations (Scopus)

Abstract

Maximum likelihood estimation is one of the most used methods in quantum state tomography, where the aim is to reconstruct the density matrix of a physical system from measurement results. One strategy to deal with positivity and unit trace constraints is to parameterize the matrix to be reconstructed in order to ensure that it is physical. In this case, the negative log-likelihood function in terms of the parameters, may have several local minima. In various papers in the field, a source of errors in this process has been associated to the possibility that most of these local minima are not global, so that optimization methods could be trapped in the wrong minimum, leading to a wrong density matrix. Here we show that, for convex negative log-likelihood functions, all local minima of the unconstrained parameterized problem are global, thus any minimizer leads to the maximum likelihood estimation for the density matrix. We also discuss some practical sources of errors.

Original languageEnglish
Pages (from-to)775-790
Number of pages16
JournalQuantum Information and Computation
Volume12
Issue number9-10
Publication statusPublished - 1 Sept 2012
Externally publishedYes

Keywords

  • Local maxima
  • Maximum likelihood
  • Quantum state tomography

Fingerprint

Dive into the research topics of 'Local solutions of maximum likelihood estimation in quantum state tomography'. Together they form a unique fingerprint.

Cite this