TY - JOUR
T1 - In Vitro and In Vivo Antimicrobial Activity of Hypochlorous Acid against Drug-Resistant and Biofilm-Producing Strains
AU - Palau, Marta
AU - Muñoz, Estela
AU - Lujan, Enric
AU - Larrosa, Nieves
AU - Gomis, Xavier
AU - Márquez, Ester
AU - Len, Oscar
AU - Almirante, Benito
AU - Abellà, Jordi
AU - Colominas, Sergi
AU - Gavaldà, Joan
N1 - Funding Information:
This study was supported by research grants from the Ministerio de Sanidad y Consumo, Instituto de Salud Carlos III (FIS 01162), la Marató TV3 (472/U/2018), and CaixaImpulse Program (Fundació “LaCaixa”) and the Spanish Network for the Research in Infectious Diseases (REIPI RD19/0016).
Publisher Copyright:
Copyright © 2022 Palau et al.
PY - 2022/9
Y1 - 2022/9
N2 - The aims of this study were as follows. First, we determined the antimicrobial efficacy of hypochlorous acid (HClO) against bacterial, fungal, and yeast strains growing planktonically and growing in biofilms. Second, we sought to compare the activity of the combination of daptomycin and HClO versus those of the antimicrobial agents alone for the treatment of experimental catheter-related Staphylococcus epidermidis infection (CRI) using the antibiotic lock technique (ALT) in a rabbit model. HClO was generated through direct electric current (DC) shots at determined amperages and times. For planktonic susceptibility studies, 1 to 3 DC shots of 2, 5, and 10 mA from 0 to 300 s were applied. A DC shot of 20 mA from 0 to 20 min was applied to biofilm-producing strains. Central venous catheters were inserted into New Zealand White rabbits, inoculated with an S. epidermidis strain, and treated with saline solution or ALT using daptomycin (50 mg/mL), HClO (20 mA for 45 min), or daptomycin plus HClO. One hundred percent of the planktonic bacterial, fungal, and yeast strains were killed by applying one DC shot of 2, 5, and 10 mA, respectively. One DC shot of 20 mA for 20 min was sufficient to eradicate 100% of the tested biofilm-producing strains. Daptomycin plus HClO lock therapy showed the highest activity for experimental CRI with S. epidermidis. HClO could be an effective strategy for treating infections caused by extensively drug-resistant or multidrug-resistant and biofilm-producing strains in medical devices and chronic wounds. The results of the ALT using daptomycin plus HClO may be promising. IMPORTANCE Currently, drug-resistant infections are increasing and there are fewer antibiotics available to treat them. Therefore, there is an urgent need to find new antibiotics and nonantimicrobial strategies to treat these infections. We present a new nonantibiotic strategy based on hypochlorous acid generation to treat long-term catheter-related and chronic wounds infections.
AB - The aims of this study were as follows. First, we determined the antimicrobial efficacy of hypochlorous acid (HClO) against bacterial, fungal, and yeast strains growing planktonically and growing in biofilms. Second, we sought to compare the activity of the combination of daptomycin and HClO versus those of the antimicrobial agents alone for the treatment of experimental catheter-related Staphylococcus epidermidis infection (CRI) using the antibiotic lock technique (ALT) in a rabbit model. HClO was generated through direct electric current (DC) shots at determined amperages and times. For planktonic susceptibility studies, 1 to 3 DC shots of 2, 5, and 10 mA from 0 to 300 s were applied. A DC shot of 20 mA from 0 to 20 min was applied to biofilm-producing strains. Central venous catheters were inserted into New Zealand White rabbits, inoculated with an S. epidermidis strain, and treated with saline solution or ALT using daptomycin (50 mg/mL), HClO (20 mA for 45 min), or daptomycin plus HClO. One hundred percent of the planktonic bacterial, fungal, and yeast strains were killed by applying one DC shot of 2, 5, and 10 mA, respectively. One DC shot of 20 mA for 20 min was sufficient to eradicate 100% of the tested biofilm-producing strains. Daptomycin plus HClO lock therapy showed the highest activity for experimental CRI with S. epidermidis. HClO could be an effective strategy for treating infections caused by extensively drug-resistant or multidrug-resistant and biofilm-producing strains in medical devices and chronic wounds. The results of the ALT using daptomycin plus HClO may be promising. IMPORTANCE Currently, drug-resistant infections are increasing and there are fewer antibiotics available to treat them. Therefore, there is an urgent need to find new antibiotics and nonantimicrobial strategies to treat these infections. We present a new nonantibiotic strategy based on hypochlorous acid generation to treat long-term catheter-related and chronic wounds infections.
KW - A. fumigatus
KW - Candida spp
KW - HClO
KW - MDR bacteria
KW - XDR bacteria
KW - antibiotic lock technique
KW - biofilms
KW - catheter-related infection
UR - http://www.scopus.com/inward/record.url?scp=85140856900&partnerID=8YFLogxK
UR - https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=pure_univeritat_ramon_llull&SrcAuth=WosAPI&KeyUT=WOS:000864098500001&DestLinkType=FullRecord&DestApp=WOS_CPL
UR - http://hdl.handle.net/20.500.14342/4479
U2 - 10.1128/spectrum.02365-22
DO - 10.1128/spectrum.02365-22
M3 - Article
C2 - 36190404
AN - SCOPUS:85140856900
SN - 2165-0497
VL - 10
JO - Microbiology Spectrum
JF - Microbiology Spectrum
IS - 5
ER -