Functional profiling identifies genes involved in organ-specific branches of the PIF3 regulatory network in Arabidopsis

Maria Sentandreu, Guiomar Martín, Nahuel González-Schain, Pablo Leivar, Judit Soy, James M. Tepperman, Peter H. Quail, Elena Monte

Research output: Indexed journal article Articlepeer-review

42 Citations (Scopus)

Abstract

The phytochrome (phy)-interacting basic helix-loop-helix transcription factors (PIFs) constitutively sustain the etiolated state of dark-germinated seedlings by actively repressing deetiolation in darkness. This action is rapidly reversed upon light exposure by phy-induced proteolytic degradation of the PIFs. Here, we combined a microarray-based approach with a functional profiling strategy and identified four PIF3-regulated genes misexpressed in the dark (MIDAs) that are novel regulators of seedling deetiolation. We provide evidence that each one of these four MIDA genes regulates a specific facet of etiolation (hook maintenance, cotyledon appression, or hypocotyl elongation), indicating that there is branching in the signaling that PIF3 relays. Furthermore, combining inferred MIDA gene function from mutant analyses with their expression profiles in response to light-induced degradation of PIF3 provides evidence consistent with a model where the action of the PIF3/MIDA regulatory network enables an initial fast response to the light and subsequently prevents an overresponse to the initial light trigger, thus optimizing the seedling deetiolation process. Collectively, the data suggest that at least part of the phy/ PIF system acts through these four MIDAs to initiate and optimize seedling deetiolation, and that this mechanism might allow the implementation of spatial (i.e., organ-specific) and temporal responses during the photomorphogenic program.

Original languageEnglish
Pages (from-to)3974-3991
Number of pages18
JournalPlant Cell
Volume23
Issue number11
DOIs
Publication statusPublished - Nov 2011
Externally publishedYes

Fingerprint

Dive into the research topics of 'Functional profiling identifies genes involved in organ-specific branches of the PIF3 regulatory network in Arabidopsis'. Together they form a unique fingerprint.

Cite this