Fabrication and thermo-mechanical behavior of ultra-fine porous copper

Marius Kreuzeder, Manuel David Abad, Mladen Mateo Primorac, Peter Hosemann, Verena Maier, Daniel Kiener

Research output: Indexed journal article Articlepeer-review

37 Citations (Scopus)

Abstract

Porous materials with ligament sizes in the submicrometer to nanometer regime have a high potential for future applications such as catalysts, actuators, or radiation tolerant materials, which require properties like high strength-to-weight ratio, high surface-to-volume ratio, or large interface density as for radiation tolerance. The objective of this work was to manufacture ultra-fine porous copper, to determine the thermo-mechanical properties, and to elucidate the deformation behavior at room as well as elevated temperatures via nanoindentation. The experimental approach for manufacturing the foam structures used high pressure torsion, subsequent heat treatments, and selective dissolution. Nanoindentation at different temperatures was successfully conducted on the ultra-fine porous copper, showing a room temperature hardness of 220 MPa. During high temperature experiments, oxidation of the copper occurred due to the high surface area. A model, taking into account the mechanical properties of the copper oxides formed during the test, to describe the measured mechanical properties in dependence on the proceeding oxidation was developed. The strain rate sensitivity of the copper foam at room temperature was ∼0.03 and strongly correlated with the strain rate sensitivity of ultra-fine grained bulk copper. Although oxidation occurred near the surface, the rate-controlling process was still the deformation of the underlying copper. An increase in the strain rate sensitivity was observed, comparably to that of ultra-fine-grained copper, which can be linked to thermally activated processes at grain boundaries. Important insights into the effects of oxidation on the deformation behavior were obtained by assessing the activation volume. Oxidation of the ultra-fine porous copper foam, thereby hindering dislocations to exit to the surface, resulted in a pronounced reduction of the apparent activation volume from ~800 to ~50 b3, as also typical for ultra-fine grained materials.

Original languageEnglish
Pages (from-to)634-643
Number of pages10
JournalJournal of Materials Science
Volume50
Issue number2
DOIs
Publication statusPublished - 22 Nov 2014
Externally publishedYes

Fingerprint

Dive into the research topics of 'Fabrication and thermo-mechanical behavior of ultra-fine porous copper'. Together they form a unique fingerprint.

Cite this