CrowdWON: A modelling language for crowd processes based on workflow nets

David Sánchez-Charles, Victor Muntés-Mulero, Marc Solé, Jordi Nin

Research output: Book chapterConference contributionpeer-review

Abstract

Although crowdsourcing has been proven efficient as a mechanism to solve independent tasks for on-line production, it is still unclear how to define and manage workflows in complex tasks that require the participation and coordination of different workers. Despite the existence of different frameworks to define workflows, we still lack a commonly accepted solution that is able to describe the most common workflows in current and future platforms. In this paper, we propose Crowd-WON, a new graphical framework to describe and monitor crowd processes, the proposed language is able to represent the workflow of most well-known existing applications, extend previous modelling frameworks, and assist in the future generation of crowdsourcing platforms. Beyond previous proposals, CrowdWON allows for the formal definition of adaptative workflows, that depend on the skills of the crowd workers and/or process deadlines. CrowdWON also allows expressing constraints on workers based on previous individual contributions. Finally, we show how our proposal can be used to describe well known crowdsourcing workflows.

Original languageEnglish
Title of host publicationProceedings of the 29th AAAI Conference on Artificial Intelligence, AAAI 2015 and the 27th Innovative Applications of Artificial Intelligence Conference, IAAI 2015
PublisherAI Access Foundation
Pages1284-1290
Number of pages7
ISBN (Electronic)9781577357001
Publication statusPublished - 1 Jun 2015
Externally publishedYes
Event29th AAAI Conference on Artificial Intelligence, AAAI 2015 and the 27th Innovative Applications of Artificial Intelligence Conference, IAAI 2015 - Austin, United States
Duration: 25 Jan 201530 Jan 2015

Publication series

NameProceedings of the National Conference on Artificial Intelligence
Volume2

Conference

Conference29th AAAI Conference on Artificial Intelligence, AAAI 2015 and the 27th Innovative Applications of Artificial Intelligence Conference, IAAI 2015
Country/TerritoryUnited States
CityAustin
Period25/01/1530/01/15

Fingerprint

Dive into the research topics of 'CrowdWON: A modelling language for crowd processes based on workflow nets'. Together they form a unique fingerprint.

Cite this