TY - JOUR
T1 - Critical evaluation of the 2D-CSIA scheme for distinguishing fuel oxygenate degradation reaction mechanisms
AU - Rosell, Mònica
AU - Gonzalez-Olmos, Rafael
AU - Rohwerder, Thore
AU - Rusevova, Klara
AU - Georgi, Anett
AU - Kopinke, Frank Dieter
AU - Richnow, Hans H.
PY - 2012/5/1
Y1 - 2012/5/1
N2 - Although the uniform initial hydroxylation of methyl tert-butyl ether (MTBE) and other oxygenates during aerobic biodegradation has already been proven by molecular tools, variations in carbon and hydrogen enrichment factors (εC and εH) have still been associated with different reaction mechanisms (McKelvie et al. Environ. Sci. Technol. 2009, 43, 2793-2799). Here, we present new laboratory-derived εC and εH data on the initial degradation mechanisms of MTBE, ethyl tert-butyl ether (ETBE), and tert-amyl methyl ether (TAME) by chemical oxidation (permanganate, Fenton reagents), acid hydrolysis, and aerobic bacteria cultures (species of Aquincola, Methylibium, Gordonia, Mycobacterium, Pseudomonas, and Rhodococcus). Plotting of Δδ2H/ Δδ 13C data from chemical oxidation and hydrolysis of ethers resulted in slopes (Λ values) of 22 ± 4 and between 6 and 12, respectively. With A. tertiaricarbonis L108, R. zopfii IFP 2005, and Gordonia sp. IFP 2009, εC was low (<|-1|‰) and εH was insignificant. Fractionation obtained with P. putida GPo1 was similar to acid hydrolysis and M. austroafricanum JOB5 and R. ruber DSM 7511 displayed Λ values previously only ascribed to anaerobic attack. The fractionation patterns rather correlate with the employment of different P450, AlkB, and other monooxygenases, likely catalyzing ether hydroxylation via different transition states. Our data questions the value of 2D-CSIA for a simple distinguishing of oxygenate biotransformation mechanisms, therefore caution and complementary tools are needed for proper interpretation of groundwater plumes at field sites.
AB - Although the uniform initial hydroxylation of methyl tert-butyl ether (MTBE) and other oxygenates during aerobic biodegradation has already been proven by molecular tools, variations in carbon and hydrogen enrichment factors (εC and εH) have still been associated with different reaction mechanisms (McKelvie et al. Environ. Sci. Technol. 2009, 43, 2793-2799). Here, we present new laboratory-derived εC and εH data on the initial degradation mechanisms of MTBE, ethyl tert-butyl ether (ETBE), and tert-amyl methyl ether (TAME) by chemical oxidation (permanganate, Fenton reagents), acid hydrolysis, and aerobic bacteria cultures (species of Aquincola, Methylibium, Gordonia, Mycobacterium, Pseudomonas, and Rhodococcus). Plotting of Δδ2H/ Δδ 13C data from chemical oxidation and hydrolysis of ethers resulted in slopes (Λ values) of 22 ± 4 and between 6 and 12, respectively. With A. tertiaricarbonis L108, R. zopfii IFP 2005, and Gordonia sp. IFP 2009, εC was low (<|-1|‰) and εH was insignificant. Fractionation obtained with P. putida GPo1 was similar to acid hydrolysis and M. austroafricanum JOB5 and R. ruber DSM 7511 displayed Λ values previously only ascribed to anaerobic attack. The fractionation patterns rather correlate with the employment of different P450, AlkB, and other monooxygenases, likely catalyzing ether hydroxylation via different transition states. Our data questions the value of 2D-CSIA for a simple distinguishing of oxygenate biotransformation mechanisms, therefore caution and complementary tools are needed for proper interpretation of groundwater plumes at field sites.
UR - http://www.scopus.com/inward/record.url?scp=84860479663&partnerID=8YFLogxK
U2 - 10.1021/es2036543
DO - 10.1021/es2036543
M3 - Article
C2 - 22455373
AN - SCOPUS:84860479663
SN - 0013-936X
VL - 46
SP - 4757
EP - 4766
JO - Environmental Science and Technology
JF - Environmental Science and Technology
IS - 9
ER -