A review of physical and perceptual feature extraction techniques for speech, music and environmental sounds

Research output: Indexed journal article Reviewpeer-review

169 Citations (Scopus)

Abstract

Endowing machines with sensing capabilities similar to those of humans is a prevalent quest in engineering and computer science. In the pursuit of making computers sense their surroundings, a huge effort has been conducted to allow machines and computers to acquire, process, analyze and understand their environment in a human-like way. Focusing on the sense of hearing, the ability of computers to sense their acoustic environment as humans do goes by the name of machine hearing. To achieve this ambitious aim, the representation of the audio signal is of paramount importance. In this paper, we present an up-to-date review of the most relevant audio feature extraction techniques developed to analyze the most usual audio signals: speech, music and environmental sounds. Besides revisiting classic approaches for completeness, we include the latest advances in the field based on new domains of analysis together with novel bio-inspired proposals. These approaches are described following a taxonomy that organizes them according to their physical or perceptual basis, being subsequently divided depending on the domain of computation (time, frequency, wavelet, image-based, cepstral, or other domains). The description of the approaches is accompanied with recent examples of their application to machine hearing related problems.

Original languageEnglish
Article number143
JournalApplied Sciences
Volume6
Issue number5
DOIs
Publication statusPublished - 2016

Keywords

  • Audio analysis
  • Audio feature extraction
  • Environmental sound
  • Machine hearing
  • Music
  • Speech

Fingerprint

Dive into the research topics of 'A review of physical and perceptual feature extraction techniques for speech, music and environmental sounds'. Together they form a unique fingerprint.

Cite this