Tribological properties of surface-modified Pd nanoparticles for electrical contacts

M. D. Abad, J. C. Sánchez-López

Producció científica: Article en revista indexadaArticleAvaluat per experts

40 Cites (Scopus)

Resum

A fully comprehensive study of the tribological behavior of palladium nanoparticles (Pd NPs) capped by tetrabutylammonium chains using a ball-on-disk tribometer under different conditions of applied load, concentration, tribometer motion, linear speed and nature of the counterface is revised. A low concentration of NPs (2. wt%) in tetrabutylammonium acetate was found sufficient to improve the tribological properties due to the formation of a protective transfer film (TF) comprised of metallic Pd. The increase of the applied load (up to 20. N, 1.82. GPa of contact pressure) confirmed the excellent extreme-pressure behavior avoiding the counterfaces from severe wear. After a running-in period whose duration depends on the operating conditions, the TF build-up allows to maintain a low contact electrical resistance through the contact (<0.1. kΩ) during the entire test. When the Pd NPs are used with ceramic counterfaces, the nanoparticles increase the load-bearing capabilities and performance of the base without forming TF, likely by mixed or boundary lubrication and healing effects. Finally, the Pd NPs are demonstrated to be useful as a thin solid lubricant film in reciprocating motion yielding a comparable tribological behavior. Hence, the presented surface Pd NPs can be very helpful to extend life of sliding components due to their high strength resistance providing a gateway to electrical conduction as well.

Idioma originalAnglès
Pàgines (de-a)943-951
Nombre de pàgines9
RevistaWear
Volum297
Número1-2
DOIs
Estat de la publicacióPublicada - 15 de gen. 2013
Publicat externament

Fingerprint

Navegar pels temes de recerca de 'Tribological properties of surface-modified Pd nanoparticles for electrical contacts'. Junts formen un fingerprint únic.

Com citar-ho