TY - JOUR
T1 - Thermodynamic properties of Lennard-Jones chain molecules
T2 - Renormalization-group corrections to a modified statistical associating fluid theory
AU - Llovell, Fèlix
AU - Pàmies, Josep C.
AU - Vega, Lourdes F.
PY - 2004/12/1
Y1 - 2004/12/1
N2 - A modified version of the statistical associating fluid theory (SAFT), the so-called soft-SAFT equation of state (EOS), has been extended by a crossover treatment to take into account the long density fluctuations encountered when the critical region is approached. The procedure, based on White's work from the renormalization group theory [Fluid Phase Equilibria 75, 53 (1992); L. W. Salvino and J. A. White, J. Chem. Phys. 96, 4559 (1992)], is implemented in terms of recursion relations where the density fluctuations are successively incorporated. The crossover soft-SAFT equation provides the correct nonclassical critical exponents when approaching the critical point, and reduces to the original soft-SAFT equation far from the critical region. The accuracy of the global equation is tested by direct comparison with molecular simulation results of Lennard-Jones chains, obtaining very good agreement and clear improvements compared to the original soft-SAFT EOS. Excellent agreement with vapor-liquid equilibrium experimental data inside and outside the critical region for the n-alkane series is also obtained. We provide a set of transferable molecular parameters for this family, unique for the whole range of thermodynamic properties.
AB - A modified version of the statistical associating fluid theory (SAFT), the so-called soft-SAFT equation of state (EOS), has been extended by a crossover treatment to take into account the long density fluctuations encountered when the critical region is approached. The procedure, based on White's work from the renormalization group theory [Fluid Phase Equilibria 75, 53 (1992); L. W. Salvino and J. A. White, J. Chem. Phys. 96, 4559 (1992)], is implemented in terms of recursion relations where the density fluctuations are successively incorporated. The crossover soft-SAFT equation provides the correct nonclassical critical exponents when approaching the critical point, and reduces to the original soft-SAFT equation far from the critical region. The accuracy of the global equation is tested by direct comparison with molecular simulation results of Lennard-Jones chains, obtaining very good agreement and clear improvements compared to the original soft-SAFT EOS. Excellent agreement with vapor-liquid equilibrium experimental data inside and outside the critical region for the n-alkane series is also obtained. We provide a set of transferable molecular parameters for this family, unique for the whole range of thermodynamic properties.
UR - http://www.scopus.com/inward/record.url?scp=10844250080&partnerID=8YFLogxK
U2 - 10.1063/1.1809112
DO - 10.1063/1.1809112
M3 - Article
AN - SCOPUS:10844250080
SN - 0021-9606
VL - 121
SP - 10715
EP - 10724
JO - Journal of Chemical Physics
JF - Journal of Chemical Physics
IS - 21
ER -