The set of unattainable points for the Rational Hermite Interpolation Problem

Teresa Cortadellas Benítez, Carlos D'Andrea, Eulàlia Montoro*

*Autor corresponent d’aquest treball

Producció científica: Article en revista indexadaArticleAvaluat per experts

4 Cites (Scopus)

Resum

We describe geometrically and algebraically the set of unattainable points for the Rational Hermite Interpolation Problem (i.e. those points where the problem does not have a solution). We show that this set is a union of equidimensional complete intersection varieties of odd codimension, the number of them being equal to the minimum between the degrees of the numerator and denominator of the problem. Each of these equidimensional varieties can be further decomposed as a union of as many rational (irreducible) varieties as input data points. We exhibit algorithms and equations defining all these objects.

Idioma originalAnglès
Pàgines (de-a)116-142
Nombre de pàgines27
RevistaLinear Algebra and Its Applications
Volum538
DOIs
Estat de la publicacióPublicada - 1 de febr. 2018
Publicat externament

Fingerprint

Navegar pels temes de recerca de 'The set of unattainable points for the Rational Hermite Interpolation Problem'. Junts formen un fingerprint únic.

Com citar-ho