The effect of functionalized self-assembling peptide scaffolds on human aortic endothelial cell function

Elsa Genové, Colette Shen, Shuguang Zhang, Carlos E. Semino

Producció científica: Article en revista indexadaArticleAvaluat per experts

285 Cites (Scopus)

Resum

A class of designed self-assembling peptide nanofiber scaffolds with more than 99% water content has been shown to be a good biological material for cell culture. Here, we report the functionalization of one of these peptide scaffolds, RAD16-I (AcN-RADARADARADARADA-CONH 2), by direct solid phase synthesis extension at the amino terminal with three short-sequence motifs. These motifs are present in two major protein components of the basement membrane, laminin 1 (YIGSR, RYVVLPR) and collagen IV (TAGSCLRKFSTM). These motifs have been previously shown to promote specific biological activities including endothelial cell adhesion, spreading, and tubular formation. Therefore, the generic functionalized peptide developed was AcN-X-GG- RADARADARADARADA-CONH 2 with each motif represented by "X". We show in this work that these tailor-made peptide scaffolds enhance the formation of confluent cell monolayers of human aortic endothelial cells (HAEC) in culture. Moreover, additional assays designed to evaluate endothelial cell function showed that HAEC monolayers obtained on these scaffolds not only maintained LDL uptake activity but also enhanced nitric oxide release and elevated laminin 1 and collagen IV deposition. These results suggest that this new scaffold provide a better physiological substrate for endothelial cell culture and suggest its further application for biomedical research, cancer biology and regenerative biology.

Idioma originalAnglès
Pàgines (de-a)3341-3351
Nombre de pàgines11
RevistaBiomaterials
Volum26
Número16
DOIs
Estat de la publicacióPublicada - de juny 2005
Publicat externament

Fingerprint

Navegar pels temes de recerca de 'The effect of functionalized self-assembling peptide scaffolds on human aortic endothelial cell function'. Junts formen un fingerprint únic.

Com citar-ho