Synthesis and biological activity of 4-amino-7-oxo-substituted analogoues of 5-Deaza-5,6,7,8-tetrahydrofolic acid and 5,10-dideaza-5,6,7,8- tetrahydrofolic acid

J. I. Borrell, J. Teixido, B. Martinez-Teipel, J. L. Metallana, M. T. Copete, A. Llimargas, E. Gracia

Producció científica: Article en revista indexadaArticleAvaluat per experts

32 Cites (Scopus)

Resum

The 4-amino-7-oxo-substituted analogues of 5-deaza-5,6,7,8- tetrahydrofolic acid (5-DATHF) and 5,10-dideaza-5,6,7,8-tetrahydrofolic acid (DDATHF) were synthesized as potential antifolates. Treatment of the α,β- unsaturated esters 11a-c, obtained in one synthetic step from commercially available para-substituted benzoates (9a-c) and methyl 2-(bromomethly)- acrylate (10), with malononitrile in NaOMe/MeOH afforded the corresponding pyridones 12a-c. Formation of the pyrido[2,3-d]pyrimidines 13a-c was accomplished upon treatment of 12a-c with guanidine in methanol. After the hydrolysis of the ester group present in 13a-c, the resulting carboxylic acids 14a-c were treated with diethyl cyanophosphonate in Et3N/DMF and coupled with L-glutamic acid dimethyl ester to give 15a-c. Finally, the basic hydrolysis of 15a-c yielded the desired 4-amino-7-oxo-substituted analogues 16a-c in 20-27% overall yield. Compounds 16a-c were tested in vitro against CCRF-CEM leukemia cells. The results obtained indicated that our 4-amino-7- oxo analogues are completely devoid of any activity, the IC50 being higher than 20 μg/mL for all cases except 14c for which a value of 6.7 μg/mL was obtained. These results seem to indicate that 16a-c are inactive precisely due to the presence of the carbonyl group in position C7, the distinctive feature of our synthetic methodology.

Idioma originalAnglès
Pàgines (de-a)3539-3545
Nombre de pàgines7
RevistaJournal of Medicinal Chemistry
Volum41
Número18
DOIs
Estat de la publicacióPublicada - 27 d’ag. 1998

Fingerprint

Navegar pels temes de recerca de 'Synthesis and biological activity of 4-amino-7-oxo-substituted analogoues of 5-Deaza-5,6,7,8-tetrahydrofolic acid and 5,10-dideaza-5,6,7,8- tetrahydrofolic acid'. Junts formen un fingerprint únic.

Com citar-ho