TY - JOUR
T1 - Sucrose, sodium dodecyl sulfate, urea, and 2-mercaptoethanol affect the thermal inactivation of R-phycoerythrin
AU - Orta Ramirez, Alicia
AU - Merrill, John E
AU - Smith, Denise M
PY - 2001/11
Y1 - 2001/11
N2 - Thermal inactivation kinetics (D- and z-values) of the algal protein, R-phycoerythrin (R-PE), were studied under different buffer conditions (pH 4.0, 7.0, and 10.0) and concentrations of sucrose, sodium dodecyl sulfate (SDS), urea, and 2-mercaptoethanol (ME). R-PE solutions were heated in capillary tubes at temperatures between 40 and 90 degrees C depending on buffer conditions. Thermal inactivation parameters for R-PE, calculated on the basis of fluorescence loss, were modified by addition of chemicals. Overall, sucrose and ME had a thermostabilizing effect, while SDS and urea decreased thermal stability of R-PE. The z-values ranged from 5.9 degrees C in 50 mM NaCl, 20 mM glycine buffer, pH 10.0, to 37.8 degrees C in 60% sucrose, 50 mM NaCl, 20 mM phosphate buffer, pH 7.0. The z-values obtained for R-PE closely matched the z-values of some target microorganisms in food processes, suggesting R-PE might be used as a time-temperature integrator to verify thermal processing adequacy.
AB - Thermal inactivation kinetics (D- and z-values) of the algal protein, R-phycoerythrin (R-PE), were studied under different buffer conditions (pH 4.0, 7.0, and 10.0) and concentrations of sucrose, sodium dodecyl sulfate (SDS), urea, and 2-mercaptoethanol (ME). R-PE solutions were heated in capillary tubes at temperatures between 40 and 90 degrees C depending on buffer conditions. Thermal inactivation parameters for R-PE, calculated on the basis of fluorescence loss, were modified by addition of chemicals. Overall, sucrose and ME had a thermostabilizing effect, while SDS and urea decreased thermal stability of R-PE. The z-values ranged from 5.9 degrees C in 50 mM NaCl, 20 mM glycine buffer, pH 10.0, to 37.8 degrees C in 60% sucrose, 50 mM NaCl, 20 mM phosphate buffer, pH 7.0. The z-values obtained for R-PE closely matched the z-values of some target microorganisms in food processes, suggesting R-PE might be used as a time-temperature integrator to verify thermal processing adequacy.
UR - https://www.webofscience.com/wos/woscc/full-record/WOS:000172247800026
U2 - 10.4315/0362-028x-64.11.1806
DO - 10.4315/0362-028x-64.11.1806
M3 - Article
C2 - 11726163
SN - 0362-028X
VL - 64
SP - 1806
EP - 1811
JO - Journal of Food Protection
JF - Journal of Food Protection
IS - 11
ER -