Scalable platform for human embryonic stem cell differentiation to cardiomyocytes in suspended microcarrier cultures

Marti Lecina, Sherwin Ting, Andre Choo, Shaul Reuveny, Steve Oh

Producció científica: Article en revista indexadaArticleAvaluat per experts

98 Cites (Scopus)

Resum

A scalable platform for human embryonic stem cell (hESC)-derived cardiomyocyte (CM) production can provide a readily available source of CMs for cell therapy, drug screening, and cardiotoxicity tests. We have designed and optimized a scalable platform using microcarrier cultures in serum-free media supplemented with SB203580 mitogen-activated protein kinase-inhibitor. Different microcarriers (DE-53, Cytodex-1 and 3, FACT, and TOSOH-10) were used to investigate the effects of type, size, shape, and microcarrier concentrations on the differentiation efficiency. hESCs propagated on TOSOH-10 (protamine derivatized 10-μm beads) at the concentration of 0.125mg/mL produced 80% beating aggregates, threefold cell expansion, and 20% of CMs (determined by fluorescence-activated cell sorting for myosin heavy chain and α-actinin expression). The ratio of CM/hESC seeded in this system was 0.62 compared to 0.22 in the embryoid body control cultures. The platform robustness has been tested with HES-3 and H1 cell lines, and its scalability was demonstrated in suspended spinner cultures. However, spinner culture yields dropped to 0.33 CM/hESC probably due to shear stress causing some cell death. Cells dissociated from differentiated aggregates showed positive staining for cardio-specific markers such as α-actinin, myosin heavy and light chain, troponin I, desmin, and emilin-2. Finally, CM functionality was also shown by QT-prolongation (QTempo) assay with/without Astemizole. This study represents a new scalable bioprocessing system for CM production using reagents that can comply with Good Manufacturing Practice.

Idioma originalAnglès
Pàgines (de-a)1609-1619
Nombre de pàgines11
RevistaTissue Engineering - Part C: Methods
Volum16
Número6
DOIs
Estat de la publicacióPublicada - 1 de des. 2010
Publicat externament

Fingerprint

Navegar pels temes de recerca de 'Scalable platform for human embryonic stem cell differentiation to cardiomyocytes in suspended microcarrier cultures'. Junts formen un fingerprint únic.

Com citar-ho