TY - JOUR
T1 - Prototype-based learning for real estate valuation
T2 - a machine learning model that explains prices
AU - Rodriguez-Serrano, Jose Antonio
N1 - Publisher Copyright:
© The Author(s) 2024.
PY - 2024/9/23
Y1 - 2024/9/23
N2 - The systematic prediction of real estate prices is a foundational block in the operations of many firms and has individual, societal and policy implications. In the past, a vast amount of works have used common statistical models such as ordinary least squares or machine learning approaches. While these approaches yield good predictive accuracy, most models work very differently from the human intuition in understanding real estate prices. Usually, humans apply a criterion known as “direct comparison”, whereby the property to be valued is explicitly compared with similar properties. This trait is frequently ignored when applying machine learning to real estate valuation. In this article, we propose a model based on a methodology called prototype-based learning, that to our knowledge has never been applied to real estate valuation. The model has four crucial characteristics: (a) it is able to capture non-linear relations between price and the input variables, (b) it is a parametric model able to optimize any loss function of interest, (c) it has some degree of explainability, and, more importantly, (d) it encodes the notion of direct comparison. None of the past approaches for real estate prediction comply with these four characteristics simultaneously. The experimental validation indicates that, in terms of predictive accuracy, the proposed model is better or on par to other machine learning based approaches. An interesting advantage of this method is the ability to summarize a dataset of real estate prices into a few “prototypes”, a set of the most representative properties.
AB - The systematic prediction of real estate prices is a foundational block in the operations of many firms and has individual, societal and policy implications. In the past, a vast amount of works have used common statistical models such as ordinary least squares or machine learning approaches. While these approaches yield good predictive accuracy, most models work very differently from the human intuition in understanding real estate prices. Usually, humans apply a criterion known as “direct comparison”, whereby the property to be valued is explicitly compared with similar properties. This trait is frequently ignored when applying machine learning to real estate valuation. In this article, we propose a model based on a methodology called prototype-based learning, that to our knowledge has never been applied to real estate valuation. The model has four crucial characteristics: (a) it is able to capture non-linear relations between price and the input variables, (b) it is a parametric model able to optimize any loss function of interest, (c) it has some degree of explainability, and, more importantly, (d) it encodes the notion of direct comparison. None of the past approaches for real estate prediction comply with these four characteristics simultaneously. The experimental validation indicates that, in terms of predictive accuracy, the proposed model is better or on par to other machine learning based approaches. An interesting advantage of this method is the ability to summarize a dataset of real estate prices into a few “prototypes”, a set of the most representative properties.
KW - Machine learning
KW - Non-linear regression
KW - Prototype-based models
KW - Real estate valuation
UR - http://www.scopus.com/inward/record.url?scp=85204644251&partnerID=8YFLogxK
U2 - 10.1007/s10479-024-06273-1
DO - 10.1007/s10479-024-06273-1
M3 - Article
AN - SCOPUS:85204644251
SN - 0254-5330
JO - Annals of Operations Research
JF - Annals of Operations Research
ER -