Resum
Plastid-to-nucleus retrograde signals emitted by dysfunctional chloroplasts impact photomorphogenic development, but the molecular link between retrograde-and photosensory-receptor signalling has remained unclear. Here, we show that the phytochrome and retrograde signalling (RS) pathways converge antagonistically to regulate the expression of the nuclear-encoded transcription factor GLK1, a key regulator of a light-induced transcriptional network central to photomorphogenesis. GLK1 gene transcription is directly repressed by PHYTOCHROME-INTERACTING FACTOR (PIF)-class bHLH transcription factors in darkness, but light-activated phytochrome reverses this activity, thereby inducing expression. Conversely, we show that retrograde signals repress this induction by a mechanism independent of PIF mediation. Collectively, our data indicate that light at moderate levels acts through the plant's nuclear-localized sensory-photoreceptor system to induce appropriate photomorphogenic development, but at excessive levels, sensed through the separate plastid-localized RS system, acts to suppress such development, thus providing a mechanism for protection against photo-oxidative damage by minimizing the tissue exposure to deleterious radiation.
Idioma original | Anglès |
---|---|
Número d’article | 11431 |
Nombre de pàgines | 10 |
Revista | Nature Communications |
Volum | 7 |
DOIs | |
Estat de la publicació | Publicada - 6 de maig 2016 |