TY - JOUR
T1 - Perinatal environment shapes microbiota colonization and infant growth
T2 - impact on host response and intestinal function
AU - Selma-Royo, M.
AU - Calatayud Arroyo, M.
AU - García-Mantrana, I.
AU - Parra-Llorca, A.
AU - Escuriet, R.
AU - Martínez-Costa, C.
AU - Collado, M. C.
N1 - Funding Information:
The authors thank the families involved in MAMI study as well as the contribution of the MAMI team including students, technicians, and MDs who participated in obtaining the samples and preparing the metadata. We thank Teresa Gonzalo del Moral and Pepi Domínguez Cano, midwifes from Cooperativa Titània-Tascó; Marga Franch i Ferrer, midwife from Cooperativa Mudra; and Concha Delgado and Adela Atero, midwifes from Casa de parts Mitjorn. Asociación de Comadronas de parto en casa de Cataluña (ALPAC), Barcelona, Spain. We also acknowledge support of the publication fee by the CSIC Open Access Publication Support Initiative through its Unit of Information Resources for Research (URICI).
Funding Information:
The authors thank the families involved in MAMI study as well as the contribution of the MAMI team including students, technicians, and MDs who participated in obtaining the samples and preparing the metadata. We thank Teresa Gonzalo del Moral and Pepi Domínguez Cano, midwifes from Cooperativa Titània-Tascó; Marga Franch i Ferrer, midwife from Cooperativa Mudra; and Concha Delgado and Adela Atero, midwifes from Casa de parts Mitjorn. Asociación de Comadronas de parto en casa de Cataluña (ALPAC), Barcelona, Spain. We also acknowledge support of the publication fee by the CSIC Open Access Publication Support Initiative through its Unit of Information Resources for Research (URICI).
Publisher Copyright:
© 2020, The Author(s).
PY - 2020/12
Y1 - 2020/12
N2 - Background: Early microbial colonization triggers processes that result in intestinal maturation and immune priming. Perinatal factors, especially those associated with birth, including both mode and place of delivery are critical to shaping the infant gut microbiota with potential health consequences. Methods: Gut microbiota profile of 180 healthy infants (n = 23 born at home and n = 157 born in hospital, 41.7% via cesarean section [CS]) was analyzed by 16S rRNA gene sequencing at birth, 7 days, and 1 month of life. Breastfeeding habits and infant clinical data, including length, weight, and antibiotic exposure, were collected up to 18 months of life. Long-term personalized in vitro models of the intestinal epithelium and innate immune system were used to assess the link between gut microbiota composition, intestinal function, and immune response. Results: Microbiota profiles were shaped by the place and mode of delivery, and they had a distinct biological impact on the immune response and intestinal function in epithelial/immune cell models. Bacteroidetes and Bifidobacterium genus were decreased in C-section infants, who showed higher z-scores BMI and W/L during the first 18 months of life. Intestinal simulated epithelium had a stronger epithelial barrier function and intestinal maturation, alongside a higher immunological response (TLR4 route activation and pro-inflammatory cytokine release), when exposed to home-birth fecal supernatants, compared with CS. Distinct host response could be associated with different microbiota profiles. Conclusions: Mode and place of birth influence the neonatal gut microbiota, likely shaping its interplay with the host through the maturation of the intestinal epithelium, regulation of the intestinal epithelial barrier, and control of the innate immune system during early life, which can affect the phenotypic responses linked to metabolic processes in infants. Trial registration: NCT03552939. [MediaObject not available: see fulltext.]
AB - Background: Early microbial colonization triggers processes that result in intestinal maturation and immune priming. Perinatal factors, especially those associated with birth, including both mode and place of delivery are critical to shaping the infant gut microbiota with potential health consequences. Methods: Gut microbiota profile of 180 healthy infants (n = 23 born at home and n = 157 born in hospital, 41.7% via cesarean section [CS]) was analyzed by 16S rRNA gene sequencing at birth, 7 days, and 1 month of life. Breastfeeding habits and infant clinical data, including length, weight, and antibiotic exposure, were collected up to 18 months of life. Long-term personalized in vitro models of the intestinal epithelium and innate immune system were used to assess the link between gut microbiota composition, intestinal function, and immune response. Results: Microbiota profiles were shaped by the place and mode of delivery, and they had a distinct biological impact on the immune response and intestinal function in epithelial/immune cell models. Bacteroidetes and Bifidobacterium genus were decreased in C-section infants, who showed higher z-scores BMI and W/L during the first 18 months of life. Intestinal simulated epithelium had a stronger epithelial barrier function and intestinal maturation, alongside a higher immunological response (TLR4 route activation and pro-inflammatory cytokine release), when exposed to home-birth fecal supernatants, compared with CS. Distinct host response could be associated with different microbiota profiles. Conclusions: Mode and place of birth influence the neonatal gut microbiota, likely shaping its interplay with the host through the maturation of the intestinal epithelium, regulation of the intestinal epithelial barrier, and control of the innate immune system during early life, which can affect the phenotypic responses linked to metabolic processes in infants. Trial registration: NCT03552939. [MediaObject not available: see fulltext.]
KW - Antibiotics
KW - Early programming
KW - Environment
KW - Epithelial barrier
KW - Immune system
KW - Microbiota
KW - Mode of birth
UR - http://www.scopus.com/inward/record.url?scp=85096438565&partnerID=8YFLogxK
U2 - 10.1186/s40168-020-00940-8
DO - 10.1186/s40168-020-00940-8
M3 - Article
C2 - 33228771
AN - SCOPUS:85096438565
SN - 2049-2618
VL - 8
JO - Microbiome
JF - Microbiome
IS - 1
M1 - 167
ER -