TY - JOUR
T1 - Osteogenic differentiation of mouse embryonic stem cells and mouse embryonic fibroblasts in a three-dimensional self-assembling peptide scaffold
AU - Garreta, Elena
AU - Genové, Elsa
AU - Borrós, Salvador
AU - Semino, Carlos E.
PY - 2006/8
Y1 - 2006/8
N2 - In the present work, we studied the differentiation capacity of mouse embryonic stem cells (mESCs) and mouse embryonic fibroblasts (MEFs) to differentiate into osteoblast-like cells in a 3-dimensional (3D) self-assembling peptide scaffold, a synthetic nanofiber biomaterial with potential applications in regenerative medicine. We demonstrated that 2D and 3D systems promoted differentiation of mESCs into cells with an osteoblast-like phenotype consisting of osteopontin and collagen I marker expression, as well as high alkaline phosphatase (ALP) activity and calcium phosphate deposits. In 3D cultures the frequency of appearance of embryonic stem cell-like colonies was substantially greater, suggesting that the 3D microenvironment promoted the generation of a stem cell-like niche that allows undifferentiated stem cell maintenance. On the other hand, after MEFs were cultured in the 3D system with their regular growth medium, but not in the 2D system, they expressed osteopontin, up-regulated metalloproteinase activities, and acquired a distinct phenotype consisting of small, elongated cells with remaining mitotic activity. Furthermore, only 3D MEF cultures underwent osteoblast differentiation after osteogenic induction, based on matrix mineralization, collagen I synthesis, ALP activity, and expression of the osteoblast transcription factor Runx2, suggesting that the 3D environment promotes differentiation of MEFs into osteoblast-like cells. We propose that the 3D system provides a unique microenvironment that promotes differentiation of mESCs and MEFs into osteoblast-like cells.
AB - In the present work, we studied the differentiation capacity of mouse embryonic stem cells (mESCs) and mouse embryonic fibroblasts (MEFs) to differentiate into osteoblast-like cells in a 3-dimensional (3D) self-assembling peptide scaffold, a synthetic nanofiber biomaterial with potential applications in regenerative medicine. We demonstrated that 2D and 3D systems promoted differentiation of mESCs into cells with an osteoblast-like phenotype consisting of osteopontin and collagen I marker expression, as well as high alkaline phosphatase (ALP) activity and calcium phosphate deposits. In 3D cultures the frequency of appearance of embryonic stem cell-like colonies was substantially greater, suggesting that the 3D microenvironment promoted the generation of a stem cell-like niche that allows undifferentiated stem cell maintenance. On the other hand, after MEFs were cultured in the 3D system with their regular growth medium, but not in the 2D system, they expressed osteopontin, up-regulated metalloproteinase activities, and acquired a distinct phenotype consisting of small, elongated cells with remaining mitotic activity. Furthermore, only 3D MEF cultures underwent osteoblast differentiation after osteogenic induction, based on matrix mineralization, collagen I synthesis, ALP activity, and expression of the osteoblast transcription factor Runx2, suggesting that the 3D environment promotes differentiation of MEFs into osteoblast-like cells. We propose that the 3D system provides a unique microenvironment that promotes differentiation of mESCs and MEFs into osteoblast-like cells.
KW - In-vitro differentiation
KW - Osteoblasts
KW - Phenotype
KW - Culture
KW - Proliferation
KW - Adipogenesis
KW - Proteolysis
KW - Inhibition
KW - Line
UR - http://www.scopus.com/inward/record.url?scp=33746737393&partnerID=8YFLogxK
UR - https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=pure_univeritat_ramon_llull&SrcAuth=WosAPI&KeyUT=WOS:000240345800016&DestLinkType=FullRecord&DestApp=WOS_CPL
U2 - 10.1089/ten.2006.12.2215
DO - 10.1089/ten.2006.12.2215
M3 - Article
C2 - 16968162
AN - SCOPUS:33746737393
SN - 1076-3279
VL - 12
SP - 2215
EP - 2227
JO - Tissue Engineering
JF - Tissue Engineering
IS - 8
ER -