TY - GEN
T1 - Modal perturbation analysis instead of nonlinear radiation pressure to derive the area sensitivity function for resonance tuning in an axisymmetric duct with variable cross-section
AU - Guasch, Oriol
AU - Arnela, Marc
N1 - Funding Information:
The authors would like to acknowledge the support provided by the Agencia Estatal de Investigación and FEDER, EU, through Project GENIOVOX TEC2016-81107-P. The first author would also like to thank l'Obra Social de la Caixa and the Universitat Ramon Llull for their support under grant 2018-URL-IR2nQ-031.
Publisher Copyright:
© INTER-NOISE 2019 MADRID - 48th International Congress and Exhibition on Noise Control Engineering. All Rights Reserved.
PY - 2019
Y1 - 2019
N2 - Axisymmetric ducts with variable cross-section are of importance in many acoustic problems ranging from horn theory to vocal tract acoustics. Webster's equation is commonly used to describe their performance in the plane wave propagation regime. In some problems, mostly related to voice generation, one is interested in modifying the area of the duct cross-sections to adjust the frequency of a resonance. For instance, one may want to increase its value, or to bring a group of resonances closer together, to emulate effects that occur in natural voice production. To that goal, an optimization iterative process can be followed in which the cross sections are subsequently changed, according to an area sensitivity function, until the resonances of the duct are placed at the target position. Traditionally, the area sensitivity functions have been derived from the non-linear radiation pressure inside the duct. In this work we demonstrate there is no need to resort to such non-linear phenomenon because the same result can be deduced from a first order modal perturbation analysis of the duct eigenfrequencies. After proving that, we present some simulations in the framework of expressive vowel production.
AB - Axisymmetric ducts with variable cross-section are of importance in many acoustic problems ranging from horn theory to vocal tract acoustics. Webster's equation is commonly used to describe their performance in the plane wave propagation regime. In some problems, mostly related to voice generation, one is interested in modifying the area of the duct cross-sections to adjust the frequency of a resonance. For instance, one may want to increase its value, or to bring a group of resonances closer together, to emulate effects that occur in natural voice production. To that goal, an optimization iterative process can be followed in which the cross sections are subsequently changed, according to an area sensitivity function, until the resonances of the duct are placed at the target position. Traditionally, the area sensitivity functions have been derived from the non-linear radiation pressure inside the duct. In this work we demonstrate there is no need to resort to such non-linear phenomenon because the same result can be deduced from a first order modal perturbation analysis of the duct eigenfrequencies. After proving that, we present some simulations in the framework of expressive vowel production.
KW - Duct acoustics
KW - Formant variation
KW - Modal perturbation analysis
KW - Numerical voice generation
KW - Variable cross-sectional area
UR - http://www.scopus.com/inward/record.url?scp=85084161081&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:85084161081
T3 - INTER-NOISE 2019 MADRID - 48th International Congress and Exhibition on Noise Control Engineering
BT - INTER-NOISE 2019 MADRID - 48th International Congress and Exhibition on Noise Control Engineering
A2 - Calvo-Manzano, Antonio
A2 - Delgado, Ana
A2 - Perez-Lopez, Antonio
A2 - Santiago, Jose Salvador
PB - SOCIEDAD ESPANOLA DE ACUSTICA - Spanish Acoustical Society, SEA
T2 - 48th International Congress and Exhibition on Noise Control Engineering, INTER-NOISE 2019 MADRID
Y2 - 16 June 2019 through 19 June 2019
ER -