How Gibbs distributions may naturally arise from synaptic adaptation mechanisms. A model-based argumentation

B. Cessac, H. Rostro, J. C. Vasquez, T. Viéville

Producció científica: Article en revista indexadaArticleAvaluat per experts

11 Cites (Scopus)

Resum

This paper addresses two questions in the context of neuronal networks dynamics, using methods from dynamical systems theory and statistical physics: (i) How to characterize the statistical properties of sequences of action potentials ("spike trains") produced by neuronal networks? and; (ii) what are the effects of synaptic plasticity on these statistics? We introduce a framework in which spike trains are associated to a coding of membrane potential trajectories, and actually, constitute a symbolic coding in important explicit examples (the so-called gIF models). On this basis, we use the thermodynamic formalism from ergodic theory to show how Gibbs distributions are natural probability measures to describe the statistics of spike trains, given the empirical averages of prescribed quantities. As a second result, we show that Gibbs distributions naturally arise when considering "slow" synaptic plasticity rules where the characteristic time for synapse adaptation is quite longer than the characteristic time for neurons dynamics.

Idioma originalAnglès
Pàgines (de-a)565-602
Nombre de pàgines38
RevistaJournal of Statistical Physics
Volum136
Número3
DOIs
Estat de la publicacióPublicada - d’ag. 2009
Publicat externament

Fingerprint

Navegar pels temes de recerca de 'How Gibbs distributions may naturally arise from synaptic adaptation mechanisms. A model-based argumentation'. Junts formen un fingerprint únic.

Com citar-ho