TY - GEN
T1 - Hierarchical CRF with product label spaces for parts-based models
AU - Roig, Gemma
AU - Boix, Xavier
AU - De La Torre, Fernando
AU - Serrat, Joan
AU - Vilella, Carles
PY - 2011
Y1 - 2011
N2 - Non-rigid object detection is a challenging open research problem in computer vision. It is a critical part in many applications such as image search, surveillance, human-computer interaction or image auto-annotation. Most successful approaches to non-rigid object detection make use of part-based models. In particular, Conditional Random Fields (CRF) have been successfully embedded into a discriminative parts-based model framework due to its effectiveness for learning and inference (usually based on a tree structure). However, CRF-based approaches do not incorporate global constraints and only model pairwise interactions. This is especially important when modeling object classes that may have complex parts interactions (e.g. facial features or body articulations), because neglecting them yields an oversimplified model with suboptimal performance. To overcome this limitation, this paper proposes a novel hierarchical CRF (HCRF). The main contribution is to build a hierarchy of part combinations by extending the label set to a hierarchy of product label spaces. In order to keep the inference computation tractable, we propose an effective method to reduce the new label set. We test our method on two applications: facial feature detection on the Multi-PIE database and human pose estimation on the Buffy dataset.
AB - Non-rigid object detection is a challenging open research problem in computer vision. It is a critical part in many applications such as image search, surveillance, human-computer interaction or image auto-annotation. Most successful approaches to non-rigid object detection make use of part-based models. In particular, Conditional Random Fields (CRF) have been successfully embedded into a discriminative parts-based model framework due to its effectiveness for learning and inference (usually based on a tree structure). However, CRF-based approaches do not incorporate global constraints and only model pairwise interactions. This is especially important when modeling object classes that may have complex parts interactions (e.g. facial features or body articulations), because neglecting them yields an oversimplified model with suboptimal performance. To overcome this limitation, this paper proposes a novel hierarchical CRF (HCRF). The main contribution is to build a hierarchy of part combinations by extending the label set to a hierarchy of product label spaces. In order to keep the inference computation tractable, we propose an effective method to reduce the new label set. We test our method on two applications: facial feature detection on the Multi-PIE database and human pose estimation on the Buffy dataset.
UR - http://www.scopus.com/inward/record.url?scp=79958693807&partnerID=8YFLogxK
U2 - 10.1109/FG.2011.5771328
DO - 10.1109/FG.2011.5771328
M3 - Conference contribution
AN - SCOPUS:79958693807
SN - 9781424491407
T3 - 2011 IEEE International Conference on Automatic Face and Gesture Recognition and Workshops, FG 2011
SP - 657
EP - 664
BT - 2011 IEEE International Conference on Automatic Face and Gesture Recognition and Workshops, FG 2011
T2 - 2011 IEEE International Conference on Automatic Face and Gesture Recognition and Workshops, FG 2011
Y2 - 21 March 2011 through 25 March 2011
ER -