TY - JOUR
T1 - Glycosynthases from Thermotoga neapolitana β-glucosidase 1A
T2 - A comparison of α-glucosyl fluoride and in situ-generated α-glycosyl formate donors
AU - Pozzo, Tania
AU - Plaza, Merichel
AU - Romero-García, Javier
AU - Faijes, Magda
AU - Karlsson, Eva Nordberg
AU - Planas, Antoni
PY - 2014/9
Y1 - 2014/9
N2 - TnBgl1A from the thermophile Thermotoga neapolitana is a dimeric β-glucosidase that belongs to glycoside hydrolase family 1 (GH1), with hydrolytic activity through the retaining mechanism, and a broad substrate specificity acting on β-1,4-, β-1,3- and β-1,6-linkages over a range of glyco-oligosaccharides. Three variants of the enzyme (TnBgl1A-E349G, TnBgl1A-E349A and TnBgl1A-E349S), mutated at the catalytic nucleophile, were constructed to evaluate their glycosynthase activity towards oligosaccharide synthesis. Two approaches were used for the synthesis reactions, both of which utilized 4-nitrophenyl β-d-glucopyranoside (4NPGlc) as an acceptor molecule: the first using an α-glucosyl fluoride donor at low temperature (35 °C) in a classical glycosynthase reaction, and the second by in situ generation of the glycosyl donor with (4NPGlc), where formate served as the exogenous nucleophile under higher temperature (70 °C). Using the first approach, TnBgl1A-E349G and TnBgl1A-E349A synthesized disaccharides with β-1,3-linkages in good yields (up to 61%) after long incubations (15 h). However, the GH1 glycosynthase Bgl3-E383A from a mesophilic Streptomyces sp., used as reference enzyme, generated a higher yield at the same temperature with both a shorter reaction time and a lower enzyme concentration. The second approach yielded disaccharides for all three mutants with predominantly β-1,3-linkages (up to 45%) but also β-1,4-linkages (up to 12.5%), after 7 h reaction time. The TnBgl1A glycosynthases were also used for glycosylation of flavonoids, using the two described approaches. Quercetin-3-glycoside was tested as an acceptor molecule and the resultant product was quercetin-3,4′-diglycosides in significantly lower yields, indicating that TnBgl1A preferentially selects 4NPGlc as the acceptor.
AB - TnBgl1A from the thermophile Thermotoga neapolitana is a dimeric β-glucosidase that belongs to glycoside hydrolase family 1 (GH1), with hydrolytic activity through the retaining mechanism, and a broad substrate specificity acting on β-1,4-, β-1,3- and β-1,6-linkages over a range of glyco-oligosaccharides. Three variants of the enzyme (TnBgl1A-E349G, TnBgl1A-E349A and TnBgl1A-E349S), mutated at the catalytic nucleophile, were constructed to evaluate their glycosynthase activity towards oligosaccharide synthesis. Two approaches were used for the synthesis reactions, both of which utilized 4-nitrophenyl β-d-glucopyranoside (4NPGlc) as an acceptor molecule: the first using an α-glucosyl fluoride donor at low temperature (35 °C) in a classical glycosynthase reaction, and the second by in situ generation of the glycosyl donor with (4NPGlc), where formate served as the exogenous nucleophile under higher temperature (70 °C). Using the first approach, TnBgl1A-E349G and TnBgl1A-E349A synthesized disaccharides with β-1,3-linkages in good yields (up to 61%) after long incubations (15 h). However, the GH1 glycosynthase Bgl3-E383A from a mesophilic Streptomyces sp., used as reference enzyme, generated a higher yield at the same temperature with both a shorter reaction time and a lower enzyme concentration. The second approach yielded disaccharides for all three mutants with predominantly β-1,3-linkages (up to 45%) but also β-1,4-linkages (up to 12.5%), after 7 h reaction time. The TnBgl1A glycosynthases were also used for glycosylation of flavonoids, using the two described approaches. Quercetin-3-glycoside was tested as an acceptor molecule and the resultant product was quercetin-3,4′-diglycosides in significantly lower yields, indicating that TnBgl1A preferentially selects 4NPGlc as the acceptor.
KW - 4-Nitrophenyl β-d-glucopyranoside
KW - Formate
KW - Quercetin
KW - α-Glucosyl fluoride
KW - β-Glucosidase
UR - http://www.scopus.com/inward/record.url?scp=84903720920&partnerID=8YFLogxK
UR - https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=pure_univeritat_ramon_llull&SrcAuth=WosAPI&KeyUT=WOS:000340698300019&DestLinkType=FullRecord&DestApp=WOS_CPL
U2 - 10.1016/j.molcatb.2014.05.021
DO - 10.1016/j.molcatb.2014.05.021
M3 - Article
AN - SCOPUS:84903720920
SN - 1381-1177
VL - 107
SP - 132
EP - 139
JO - Journal of Molecular Catalysis B: Enzymatic
JF - Journal of Molecular Catalysis B: Enzymatic
ER -