TY - JOUR
T1 - Functional profiling identifies genes involved in organ-specific branches of the PIF3 regulatory network in Arabidopsis
AU - Sentandreu, Maria
AU - Martín, Guiomar
AU - González-Schain, Nahuel
AU - Leivar, Pablo
AU - Soy, Judit
AU - Tepperman, James M.
AU - Quail, Peter H.
AU - Monte, Elena
PY - 2011/11
Y1 - 2011/11
N2 - The phytochrome (phy)-interacting basic helix-loop-helix transcription factors (PIFs) constitutively sustain the etiolated state of dark-germinated seedlings by actively repressing deetiolation in darkness. This action is rapidly reversed upon light exposure by phy-induced proteolytic degradation of the PIFs. Here, we combined a microarray-based approach with a functional profiling strategy and identified four PIF3-regulated genes misexpressed in the dark (MIDAs) that are novel regulators of seedling deetiolation. We provide evidence that each one of these four MIDA genes regulates a specific facet of etiolation (hook maintenance, cotyledon appression, or hypocotyl elongation), indicating that there is branching in the signaling that PIF3 relays. Furthermore, combining inferred MIDA gene function from mutant analyses with their expression profiles in response to light-induced degradation of PIF3 provides evidence consistent with a model where the action of the PIF3/MIDA regulatory network enables an initial fast response to the light and subsequently prevents an overresponse to the initial light trigger, thus optimizing the seedling deetiolation process. Collectively, the data suggest that at least part of the phy/ PIF system acts through these four MIDAs to initiate and optimize seedling deetiolation, and that this mechanism might allow the implementation of spatial (i.e., organ-specific) and temporal responses during the photomorphogenic program.
AB - The phytochrome (phy)-interacting basic helix-loop-helix transcription factors (PIFs) constitutively sustain the etiolated state of dark-germinated seedlings by actively repressing deetiolation in darkness. This action is rapidly reversed upon light exposure by phy-induced proteolytic degradation of the PIFs. Here, we combined a microarray-based approach with a functional profiling strategy and identified four PIF3-regulated genes misexpressed in the dark (MIDAs) that are novel regulators of seedling deetiolation. We provide evidence that each one of these four MIDA genes regulates a specific facet of etiolation (hook maintenance, cotyledon appression, or hypocotyl elongation), indicating that there is branching in the signaling that PIF3 relays. Furthermore, combining inferred MIDA gene function from mutant analyses with their expression profiles in response to light-induced degradation of PIF3 provides evidence consistent with a model where the action of the PIF3/MIDA regulatory network enables an initial fast response to the light and subsequently prevents an overresponse to the initial light trigger, thus optimizing the seedling deetiolation process. Collectively, the data suggest that at least part of the phy/ PIF system acts through these four MIDAs to initiate and optimize seedling deetiolation, and that this mechanism might allow the implementation of spatial (i.e., organ-specific) and temporal responses during the photomorphogenic program.
KW - Phytochrome interacting factor-3
KW - Light-dependent development
KW - Bhlh transcription factors
KW - B-box protein
KW - Chlorophyll biosynthesis
KW - Chloroplast development
KW - Mediated degradation
KW - Negative regulator
KW - Signaling networks
KW - Shade avoidance
UR - http://www.scopus.com/inward/record.url?scp=84855222513&partnerID=8YFLogxK
UR - https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=pure_univeritat_ramon_llull&SrcAuth=WosAPI&KeyUT=WOS:000298674200012&DestLinkType=FullRecord&DestApp=WOS_CPL
U2 - 10.1105/tpc.111.088161
DO - 10.1105/tpc.111.088161
M3 - Article
C2 - 22108407
AN - SCOPUS:84855222513
SN - 1040-4651
VL - 23
SP - 3974
EP - 3991
JO - Plant Cell
JF - Plant Cell
IS - 11
ER -