Resum
Network security tests should be periodically conducted to detect vulnerabilities before they are exploited. However, analysis of testing results is resource intensive with many data and requires expertise because it is an unsupervised domain. This paper presents how to automate and improve this analysis through the identification and explanation of device groups with similar vulnerabilities. Clustering is used for discovering hidden patterns and abnormal behaviors. Self-organizing maps are preferred due to their soft computing capabilities. Explanations based on anti-unification give comprehensive descriptions of clustering results to analysts. This approach is integrated in Consensus, a computer-aided system to detect network vulnerabilities.
Idioma original | Anglès |
---|---|
Pàgines (de-a) | 2754-2762 |
Nombre de pàgines | 9 |
Revista | Neurocomputing |
Volum | 72 |
Número | 13-15 |
DOIs | |
Estat de la publicació | Publicada - d’ag. 2009 |