TY - JOUR
T1 - Effects of Different Moments of Inertia on Neuromuscular Performance in Elite Female Soccer Players During Hip Extension Exercise to Prevent Hamstring Asymmetries and Injuries
T2 - A Cross-Sectional Study
AU - Pumarola, Jordi
AU - Badiola-Zabala, Alesander
AU - Solana-Tramunt, Mònica
N1 - Publisher Copyright:
© 2025 by the authors.
PY - 2025/7
Y1 - 2025/7
N2 - Background: High-intensity actions like accelerations and decelerations, often performed unilaterally, are crucial in elite female football but increase the risk of interlimb asymmetries and injury. Flywheel resistance training enhances eccentric strength, yet limited research has assessed how different inertial loads affect mechanical outputs in unilateral exercises. Purpose: This study investigated how two inertial loads (0.107 kg·m2 and 0.133 kg·m2) influence power, acceleration, speed, and asymmetry during unilateral hip extensions in elite female footballers. Methods: Eighteen professional players (27 ± 4 years, 59.9 ± 6.5 kg, 168.2 ± 6.3 cm, BMI 21.2 ± 1.8) completed unilateral hip extensions on a conical flywheel under both inertia conditions. A rotary encoder measured peak/average power, acceleration, speed, and eccentric-to-concentric (E:C) ratios. Bilateral asymmetries between dominant (DL) and non-dominant (NDL) limbs were assessed. Paired t-tests and Cohen’s d were used for analysis. Results: Higher inertia reduced peak and mean acceleration and speed (p < 0.001, d > 0.8). Eccentric peak power significantly increased in the NDL (p < 0.001, d = 3.952). E:C ratios remained stable. Conclusions: Greater inertial loads reduce movement velocity but increase eccentric output in the NDL, offering potential strategies to manage neuromuscular asymmetries in elite female football players.
AB - Background: High-intensity actions like accelerations and decelerations, often performed unilaterally, are crucial in elite female football but increase the risk of interlimb asymmetries and injury. Flywheel resistance training enhances eccentric strength, yet limited research has assessed how different inertial loads affect mechanical outputs in unilateral exercises. Purpose: This study investigated how two inertial loads (0.107 kg·m2 and 0.133 kg·m2) influence power, acceleration, speed, and asymmetry during unilateral hip extensions in elite female footballers. Methods: Eighteen professional players (27 ± 4 years, 59.9 ± 6.5 kg, 168.2 ± 6.3 cm, BMI 21.2 ± 1.8) completed unilateral hip extensions on a conical flywheel under both inertia conditions. A rotary encoder measured peak/average power, acceleration, speed, and eccentric-to-concentric (E:C) ratios. Bilateral asymmetries between dominant (DL) and non-dominant (NDL) limbs were assessed. Paired t-tests and Cohen’s d were used for analysis. Results: Higher inertia reduced peak and mean acceleration and speed (p < 0.001, d > 0.8). Eccentric peak power significantly increased in the NDL (p < 0.001, d = 3.952). E:C ratios remained stable. Conclusions: Greater inertial loads reduce movement velocity but increase eccentric output in the NDL, offering potential strategies to manage neuromuscular asymmetries in elite female football players.
KW - acceleration output
KW - cone-shaped prevention exercise
KW - hamstrings asymmetry
KW - inertia load
KW - iso-inertial devices
KW - power output
KW - speed output
UR - https://www.scopus.com/pages/publications/105011652577
U2 - 10.3390/sports13070212
DO - 10.3390/sports13070212
M3 - Article
AN - SCOPUS:105011652577
SN - 2075-4663
VL - 13
JO - Sports
JF - Sports
IS - 7
M1 - 212
ER -