Domain of competence of XCS classifier system in complexity measurement space

Ester Bernadó-Mansilla, Tin Kam Ho

    Producció científica: Article en revista indexadaArticleAvaluat per experts

    92 Cites (Scopus)

    Resum

    The XCS classifier system has recently shown a high degree of competence on a variety of data mining problems, but to what kind of problems XCS is well and poorly suited is seldom understood, especially for real-world classification problems. The major inconvenience has been attributed to the difficulty of determining the intrinsic characteristics of real-world classification problems. This paper investigates the domain of competence of XCS by means of a methodology that characterizes the complexity of a classification problem by a set of geometrical descriptors. In a study of 392 classification problems along with their complexity characterization, we are able to identify difficult and easy domains for XCS. We focus on XCS with hyperrectangle codification, which has been predominantly used for real-attributed domains. The results show high correlations between XCS's performance and measures of length of class boundaries, compactness of classes, and nonlinearities of decision boundaries. We also compare the relative performance of XCS with other traditional classifier schemes. Besides confirming the high degree of competence of XCS in these problems, we are able to relate the behavior of the different classifier schemes to the geometrical complexity of the problem. Moreover, the results highlight certain regions of the complexity measurement space where a classifier scheme excels, establishing a first step toward determining the best classifier scheme for a given classification problem.

    Idioma originalAnglès
    Pàgines (de-a)82-104
    Nombre de pàgines23
    RevistaIEEE Transactions on Evolutionary Computation
    Volum9
    Número1
    DOIs
    Estat de la publicacióPublicada - de febr. 2005

    Fingerprint

    Navegar pels temes de recerca de 'Domain of competence of XCS classifier system in complexity measurement space'. Junts formen un fingerprint únic.

    Com citar-ho