Critical evaluation of the 2D-CSIA scheme for distinguishing fuel oxygenate degradation reaction mechanisms

Mònica Rosell, Rafael Gonzalez-Olmos, Thore Rohwerder, Klara Rusevova, Anett Georgi, Frank Dieter Kopinke, Hans H. Richnow

Producció científica: Article en revista indexadaArticleAvaluat per experts

31 Cites (Scopus)


Although the uniform initial hydroxylation of methyl tert-butyl ether (MTBE) and other oxygenates during aerobic biodegradation has already been proven by molecular tools, variations in carbon and hydrogen enrichment factors (εC and εH) have still been associated with different reaction mechanisms (McKelvie et al. Environ. Sci. Technol. 2009, 43, 2793-2799). Here, we present new laboratory-derived εC and εH data on the initial degradation mechanisms of MTBE, ethyl tert-butyl ether (ETBE), and tert-amyl methyl ether (TAME) by chemical oxidation (permanganate, Fenton reagents), acid hydrolysis, and aerobic bacteria cultures (species of Aquincola, Methylibium, Gordonia, Mycobacterium, Pseudomonas, and Rhodococcus). Plotting of Δδ2H/ Δδ 13C data from chemical oxidation and hydrolysis of ethers resulted in slopes (Λ values) of 22 ± 4 and between 6 and 12, respectively. With A. tertiaricarbonis L108, R. zopfii IFP 2005, and Gordonia sp. IFP 2009, εC was low (<|-1|‰) and εH was insignificant. Fractionation obtained with P. putida GPo1 was similar to acid hydrolysis and M. austroafricanum JOB5 and R. ruber DSM 7511 displayed Λ values previously only ascribed to anaerobic attack. The fractionation patterns rather correlate with the employment of different P450, AlkB, and other monooxygenases, likely catalyzing ether hydroxylation via different transition states. Our data questions the value of 2D-CSIA for a simple distinguishing of oxygenate biotransformation mechanisms, therefore caution and complementary tools are needed for proper interpretation of groundwater plumes at field sites.

Idioma originalAnglès
Pàgines (de-a)4757-4766
Nombre de pàgines10
RevistaEnvironmental Science and Technology
Estat de la publicacióPublicada - 1 de maig 2012
Publicat externament


Navegar pels temes de recerca de 'Critical evaluation of the 2D-CSIA scheme for distinguishing fuel oxygenate degradation reaction mechanisms'. Junts formen un fingerprint únic.

Com citar-ho