Contribution of a disulfide bridge to the stability of 1,3-1,4-p-d-glucan 4-glucanohydrolase from Bacillus licheniformis

Jaume Pons, Antoni Planas, Enrique Querol

Producció científica: Article en revista indexadaArticleAvaluat per experts

21 Cites (Scopus)

Resum

Bacillus 1,3-1,4-β-glucanases possess a highly conserved disulfide bridge connecting a β-strand with a solventexposed loop lying on top of the extended binding site cleft The contribution of the disulfide bond and of both individual cysteines (Cys61 and Cys90) in the Bacillus licheniformis enzyme to stability and activity has been evaluated by protein engineering methods. Reduction of the disulfide bond has no effect on kinetic parameters, has only a minor effect on the activity-temperature profile at high temperatures, and destabilizes the protein by less than 0.7 kcal/mol as measured by equilibrium urea denatu ration at 37°C. Replacing either of the Cys residues with Ala destabilizes the protein and lowers the specific activity. C90A retains 70% of wild-type (wt) activity (in terms of Vmax), whereas C61A and the double mutant C61A-C90A have 10% of wt Vmax. A larger change in free energy of unfolding is seen by equilibrium urea denaturation for the C61A mutation (loop residue, 3.2 kcal/mol relative to reduced wt) as compared with the C90A mutation (β-strand residue, 1.8 kcal/mol relative to reduced wt), while the double mutant C61A-C90A is ∼0.8 kcal/mol less stable than the single C61A mutant. The effects on stability are interpreted as a result of the change in hydrophobic packing that occurs upon removal of the sulfur atoms in the Cys to Ala mutations

Idioma originalAnglès
Pàgines (de-a)939-945
Nombre de pàgines7
RevistaProtein Engineering, Design and Selection
Volum8
Número9
DOIs
Estat de la publicacióPublicada - de set. 1995

Fingerprint

Navegar pels temes de recerca de 'Contribution of a disulfide bridge to the stability of 1,3-1,4-p-d-glucan 4-glucanohydrolase from Bacillus licheniformis'. Junts formen un fingerprint únic.

Com citar-ho