TY - JOUR
T1 - Climatology characterization of equatorial plasma bubbles using GPS data
AU - Magdaleno, Sergio
AU - Herraiz, Miguel
AU - Altadill, David
AU - De La Morena, Benito A.
N1 - Publisher Copyright:
© S. Magdaleno et al.
PY - 2017
Y1 - 2017
N2 - The climatology of equatorial plasma bubbles (EPBs) for the period 1998-2008 was studied using slant total electron content (sTEC) derived from global positioning system (GPS) data. The sTEC values were calculated from data measured at 67 International GNSS Service (IGS) stations distributed worldwide around the geomagnetic equator and embracing the region of the ionospheric equatorial anomaly (IEA). EPBs and their characteristics were obtained using the Ionospheric Bubble Seeker (IBS) application, which detects and distinguishes sTEC depletions associated with EPBs. This technique bases its analysis on the time variation of the sTEC and on the population variance of this time variation. IBS finds an EPB by default when an sTEC depletion is greater than 5 TEC units (TECu). The analysis of the spatial behavior shows that the largest rate of EPB takes place at the equator and in the South America-Africa sector, while their occurrence decreases as the distance from the magnetic equator increases. The depth and duration of the sTEC depletions also maximize at the equator and in the South America-Africa sector and weaken departing from the equator. The results of the temporal analysis for the data of the IGS stations located in AREQ, NKLG, IISC, and GUAM indicate that the greatest rate of EPB occurrence is observed for high solar activity.
AB - The climatology of equatorial plasma bubbles (EPBs) for the period 1998-2008 was studied using slant total electron content (sTEC) derived from global positioning system (GPS) data. The sTEC values were calculated from data measured at 67 International GNSS Service (IGS) stations distributed worldwide around the geomagnetic equator and embracing the region of the ionospheric equatorial anomaly (IEA). EPBs and their characteristics were obtained using the Ionospheric Bubble Seeker (IBS) application, which detects and distinguishes sTEC depletions associated with EPBs. This technique bases its analysis on the time variation of the sTEC and on the population variance of this time variation. IBS finds an EPB by default when an sTEC depletion is greater than 5 TEC units (TECu). The analysis of the spatial behavior shows that the largest rate of EPB takes place at the equator and in the South America-Africa sector, while their occurrence decreases as the distance from the magnetic equator increases. The depth and duration of the sTEC depletions also maximize at the equator and in the South America-Africa sector and weaken departing from the equator. The results of the temporal analysis for the data of the IGS stations located in AREQ, NKLG, IISC, and GUAM indicate that the greatest rate of EPB occurrence is observed for high solar activity.
KW - Aeronomy
KW - Ionosphere (equatorial)
KW - Plasma physics
KW - Remote sensing
KW - Total electron content
UR - http://www.scopus.com/inward/record.url?scp=85009469952&partnerID=8YFLogxK
U2 - 10.1051/swsc/2016039
DO - 10.1051/swsc/2016039
M3 - Article
AN - SCOPUS:85009469952
SN - 2115-7251
VL - 7
JO - Journal of Space Weather and Space Climate
JF - Journal of Space Weather and Space Climate
M1 - A3
ER -