TY - JOUR
T1 - Chemoenzymic synthesis of (1→3,1→4)-β-D-glucooligosaccharides for subsite mapping of (1→3,1→4)-β-D-glucan endohydrolases
AU - Hrmova, Maria
AU - Fincher, Geoffrey B.
AU - Viladot, Josep Luis
AU - Planas, Antoni
AU - Driguez, Hugues
PY - 1998/11/7
Y1 - 1998/11/7
N2 - A series of unsubstituted (1→3,1→4)-β-D-glucooligosaccharides, designed for subsite mapping in which the number of glucosyl-binding subsites and the subsite-binding/transition state activation affinities at individual subsites of plant and bacterial (1→3,1→4)-β-D-glucan 4-glucanohydrolases (EC 3.2.1.73) can be determined, has been synthesised through chemical and enzymic procedures. A recombinant (1→3,1→4)-β-D-glucan 4-glucanohydrolase from Bacillus licheniformis has been used in organic media to catalyse the condensation of 3-O-β-D-glucopyranosyl-β-D-glucopyranosyl fluoride (Glcβ3GlcβF, compound 1) with cellobiose (Glcβ4Glc, 2), cellotriose (Glcβ4Glcβ4Glc, 3), cellotetraose (Glcβ4Glcβ4Glcβ4Glc, 4) and cellopentaose (Glcβ4Glcβ4Glcβ4Glcβ4Glc, 5), to produce the (1→3,1→4)-β-D-glucooligosaccharides, Glcβ3Glcβ4Glcβ4Glc 6, Glcβ3Glcβ4Glcβ4Glcβ4Glc 7, Glcβ3Glcβ4Glcβ4Glcβ4Glcβ4Glc 8, Glcβ3Glcβ4Glcβ4Glcβ4Glcβ4Glcβ4Glc 9. Synthesised oligosaccharides 6-9 were isolated in yields of 15-45%, compared with compound 1. In a second series of syntheses, a cellodextrin phosphorylase (EC 2.4.1.49) from Clostridium thermocellum was used to sequentially transfer glucosyl residues from α-D-glucopyranosyl phosphate 10 to the 4-position of the non-reducing terminus of the trisaccharide Glcβ3Glcβ4Glc 11, to generate the (1→3,1→4)-β-D-glucooligosaccharides, Glcβ4Glcβ3Glcβ4Glc 12, Glcβ4Glcβ4Glcβ3Glcβ4Glc 13, Glcβ4Glcβ4Glcβ4Glcβ3Glcβ4Glc 14 in 14, 10 and 5% yield, respectively, from compound 11.
AB - A series of unsubstituted (1→3,1→4)-β-D-glucooligosaccharides, designed for subsite mapping in which the number of glucosyl-binding subsites and the subsite-binding/transition state activation affinities at individual subsites of plant and bacterial (1→3,1→4)-β-D-glucan 4-glucanohydrolases (EC 3.2.1.73) can be determined, has been synthesised through chemical and enzymic procedures. A recombinant (1→3,1→4)-β-D-glucan 4-glucanohydrolase from Bacillus licheniformis has been used in organic media to catalyse the condensation of 3-O-β-D-glucopyranosyl-β-D-glucopyranosyl fluoride (Glcβ3GlcβF, compound 1) with cellobiose (Glcβ4Glc, 2), cellotriose (Glcβ4Glcβ4Glc, 3), cellotetraose (Glcβ4Glcβ4Glcβ4Glc, 4) and cellopentaose (Glcβ4Glcβ4Glcβ4Glcβ4Glc, 5), to produce the (1→3,1→4)-β-D-glucooligosaccharides, Glcβ3Glcβ4Glcβ4Glc 6, Glcβ3Glcβ4Glcβ4Glcβ4Glc 7, Glcβ3Glcβ4Glcβ4Glcβ4Glcβ4Glc 8, Glcβ3Glcβ4Glcβ4Glcβ4Glcβ4Glcβ4Glc 9. Synthesised oligosaccharides 6-9 were isolated in yields of 15-45%, compared with compound 1. In a second series of syntheses, a cellodextrin phosphorylase (EC 2.4.1.49) from Clostridium thermocellum was used to sequentially transfer glucosyl residues from α-D-glucopyranosyl phosphate 10 to the 4-position of the non-reducing terminus of the trisaccharide Glcβ3Glcβ4Glc 11, to generate the (1→3,1→4)-β-D-glucooligosaccharides, Glcβ4Glcβ3Glcβ4Glc 12, Glcβ4Glcβ4Glcβ3Glcβ4Glc 13, Glcβ4Glcβ4Glcβ4Glcβ3Glcβ4Glc 14 in 14, 10 and 5% yield, respectively, from compound 11.
UR - http://www.scopus.com/inward/record.url?scp=33750247646&partnerID=8YFLogxK
U2 - 10.1039/a804711a
DO - 10.1039/a804711a
M3 - Article
AN - SCOPUS:33750247646
SN - 1472-7781
SP - 3571
EP - 3576
JO - Journal of the Chemical Society, Perkin Transactions 1
JF - Journal of the Chemical Society, Perkin Transactions 1
IS - 21
ER -