Burch's inequality and the depth of the blow up rings of an ideal

Teresa Cortadellas*, Santiago Zarzuela

*Autor corresponent d’aquest treball

Producció científica: Article en revista indexadaArticleAvaluat per experts

8 Cites (Scopus)

Resum

Let (A,m) be a local noetherian ring with infinite residue field and I an ideal of A. Consider RA(I) and GA(I), respectively, the Rees algebra and the associated graded ring of I, and denote by l(I) the analytic spread of I. Burch's inequality says that l(I)+inf{depthA/In,n≥1}≤dim(A), and it is well known that equality holds if GA(I) is Cohen-Macaulay. Thus, in that case one can compute the depth of the associated graded ring of I as depthGA(I)=l(I)+inf{depthA/In,n≥1}. We study when such an equality is also valid when GA(I) is not necessarily Cohen-Macaulay, and we obtain positive results for ideals with analytic deviation less or equal than one and reduction number at most two. In those cases we may also give the value of depthRA(I).

Idioma originalAnglès
Pàgines (de-a)183-204
Nombre de pàgines22
RevistaJournal of Pure and Applied Algebra
Volum157
Número2-3
DOIs
Estat de la publicacióPublicada - 23 de març 2001
Publicat externament

Fingerprint

Navegar pels temes de recerca de 'Burch's inequality and the depth of the blow up rings of an ideal'. Junts formen un fingerprint únic.

Com citar-ho