Resum
We consider generic families Xθ of smooth dynamical systems depending on parameters θ ∈ P where P is a 2-dimensional simply connected domain and assume that each Xθ only has a finite number of restpoints and periodic orbits. We prove that if over the boundary of P there is a S or Z shaped bifurcation graph containing two opposing fold bifurcation points while over the rest of the boundary there are no other bifurcation points, then, if there is no fold-Hopf bifurcation in P, there is a set of bifurcation curves in P that contain an odd number of cusps. In particular, there is at least one codimension 2 bifurcation point in the interior of P.
| Idioma original | Anglès |
|---|---|
| Número d’article | 045015 |
| Pàgines (de-a) | 1-14 |
| Nombre de pàgines | 14 |
| Revista | Nonlinearity |
| Volum | 38 |
| Número | 4 |
| DOIs | |
| Estat de la publicació | Publicada - 30 d’abr. 2025 |