Bayesian Symbolic Learning to Build Analytical Correlations from Rigorous Process Simulations: Application to CO2Capture Technologies

Valentina Negri, Daniel Vázquez, Marta Sales-Pardo, Roger Guimerà, Gonzalo Guillén-Gosálbez

Producció científica: Article en revista indexadaArticleAvaluat per experts

7 Cites (Scopus)

Resum

Process modeling has become a fundamental tool to guide experimental work. Unfortunately, process models based on first principles can be expensive to develop and evaluate, and hard to use, particularly when convergence issues arise. This work proves that Bayesian symbolic learning can be applied to derive simple closed-form expressions from rigorous process simulations, streamlining the process modeling task and making process models more accessible to experimental groups. Compared to conventional surrogate models, our approach provides analytical expressions that are easier to communicate and manipulate algebraically to get insights into the process. We apply this method to synthetic data obtained from two basic CO2capture processes simulated in Aspen HYSYS, identifying accurate simplified interpretable equations for key variables dictating the process economic and environmental performance. We then use these expressions to analyze the process variables' elasticities and benchmark an emerging CO2capture process against the business as usual technology.

Idioma originalAnglès
Pàgines (de-a)41147-41164
Nombre de pàgines18
RevistaACS Omega
Volum7
Número45
DOIs
Estat de la publicacióPublicada - 15 de nov. 2022
Publicat externament

Fingerprint

Navegar pels temes de recerca de 'Bayesian Symbolic Learning to Build Analytical Correlations from Rigorous Process Simulations: Application to CO2Capture Technologies'. Junts formen un fingerprint únic.

Com citar-ho