Automatic curve fitting based on radial basis functions and a hierarchical genetic algorithm

G. Trejo-Caballero, H. Rostro-Gonzalez, C. H. Garcia-Capulin, O. G. Ibarra-Manzano, J. G. Avina-Cervantes, C. Torres-Huitzil

Producció científica: Article en revista indexadaArticleAvaluat per experts

9 Cites (Scopus)

Resum

Curve fitting is a very challenging problem that arises in a wide variety of scientific and engineering applications. Given a set of data points, possibly noisy, the goal is to build a compact representation of the curve that corresponds to the best estimate of the unknown underlying relationship between two variables. Despite the large number of methods available to tackle this problem, it remains challenging and elusive. In this paper, a new method to tackle such problem using strictly a linear combination of radial basis functions (RBFs) is proposed. To be more specific, we divide the parameter search space into linear and nonlinear parameter subspaces. We use a hierarchical genetic algorithm (HGA) to minimize a model selection criterion, which allows us to automatically and simultaneously determine the nonlinear parameters and then, by the least-squares method through Singular Value Decomposition method, to compute the linear parameters. The method is fully automatic and does not require subjective parameters, for example, smooth factor or centre locations, to perform the solution. In order to validate the efficacy of our approach, we perform an experimental study with several tests on benchmarks smooth functions. A comparative analysis with two successful methods based on RBF networks has been included.

Idioma originalAnglès
Número d’article731207
RevistaMathematical Problems in Engineering
Volum2015
DOIs
Estat de la publicacióPublicada - 2015
Publicat externament

Fingerprint

Navegar pels temes de recerca de 'Automatic curve fitting based on radial basis functions and a hierarchical genetic algorithm'. Junts formen un fingerprint únic.

Com citar-ho