Automated tool for cylindrical glass container blow and blow mold design

Oriol Fibla-Figuerola, Adrià Biosca, Vicenç Pedret-Clemente, Horacio Rostro-González, Joaquín Menacho, Andrés Amador García-Granada*

*Autor corresponent d’aquest treball

Producció científica: Article en revista indexadaArticleAvaluat per experts

Resum

The manufacture of perfumery bottles using the blow-and-blow technique necessitates iterative design and production of intermediate or preparation molds to achieve an appropriate thickness distribution. Designers seek a specific glass thickness at the bottle's bottom as an indicator of quality while ensuring a minimum thickness in the rest of the bottle, particularly the neck, to withstand vertical compressive loads during bottle filling. One cost-reduction strategy involves the use of finite element simulations; however, this technique demands significant engineering time and validation efforts. This study proposes a novel method for designing cylindrical bottles, facilitating the automated generation of preparation mold geometries for manufacturing. Key findings include the successful parameter-based analysis accounting for container capacity, mass, and height-to-diameter aspect ratio which was experimentally validated across several container sizes against traditional experimental iterations. Validation tests demonstrated that the automatically generated geometries yield functional bottle designs capable of withstanding compressive loads. The primary advantage of this approach lies in a substantial reduction in development time, from 32.9 to 18.3 days, providing a significant competitive edge. However, the current methodology is applicable to only 6% of the bottles in the production range. Expanding its applicability will require further database analysis to incorporate additional parameters for other bottle geometries. This limitation underscores the potential for continued refinement and broader industrial adoption.

Idioma originalAnglès
Número d’articlee16702
Pàgines (de-a)1-14
Nombre de pàgines14
RevistaInternational Journal of Applied Glass Science
DOIs
Estat de la publicacióPublicació electrònica prèvia a la impressió - 12 de març 2025

Fingerprint

Navegar pels temes de recerca de 'Automated tool for cylindrical glass container blow and blow mold design'. Junts formen un fingerprint únic.

Com citar-ho