TY - JOUR
T1 - Arsenic Response of Three Altiplanic Exiguobacterium Strains With Different Tolerance Levels Against the Metalloid Species
T2 - A Proteomics Study
AU - Castro-Severyn, Juan
AU - Pardo-Esté, Coral
AU - Sulbaran, Yoelvis
AU - Cabezas, Carolina
AU - Gariazzo, Valentina
AU - Briones, Alan
AU - Morales, Naiyulin
AU - Séveno, Martial
AU - Decourcelle, Mathilde
AU - Salvetat, Nicolas
AU - Remonsellez, Francisco
AU - Castro-Nallar, Eduardo
AU - Molina, Franck
AU - Molina, Laurence
AU - Saavedra, Claudia P.
N1 - Funding Information:
We would like to thank the sequencing service of Pontificia Universidad Católica de Chile that works through CONICYT – FONDEQUIP EQM150077. EC-N would like to thank Universidad Andrés Bello’s high-performance computing cluster, Dylan, for providing data storage, support, and computing power for genomic analyses. We would also like to thank the Pôle Protéome de Montpellier, specifically to the Functional Proteomic and Clinic Proteomic Platforms for the invaluable collaboration in the development of this research. Funding. This research was sponsored by the CONICYT (Comisión Nacional para la Investigación Científica y Tecnológica de Chile) grants and the Centre National de la Recherche Scientifique (CNRS-France). CS was funded by the CONICYT FONDECYT 1160315, ECOS-CONICYT 170023, and Universidad Andrés Bello Núcleo DI-3-17/N UNAB. FR was funded by the CONICYT FONDECYT 11100414. EC-N was funded by the CONICYT FONDECYT Inicio 11160905. JC-S, CP-E, YS, CC, and AB were funded by the CONICYT National Doctoral Fellowship. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
Publisher Copyright:
© Copyright © 2019 Castro-Severyn, Pardo-Esté, Sulbaran, Cabezas, Gariazzo, Briones, Morales, Séveno, Decourcelle, Salvetat, Remonsellez, Castro-Nallar, Molina, Molina and Saavedra.
PY - 2019/9/26
Y1 - 2019/9/26
N2 - Exiguobacterium is a polyextremophile bacterial genus with a physiology that allows it to develop in different adverse environments. The Salar de Huasco is one of these environments due to its altitude, atmospheric pressure, solar radiation, temperature variations, pH, salinity, and the presence of toxic compounds such as arsenic. However, the physiological and/or molecular mechanisms that enable them to prosper in these environments have not yet been described. Our research group has isolated several strains of Exiguobacterium genus from different sites of Salar de Huasco, which show different resistance levels to As(III) and As(V). In this work, we compare the protein expression patterns of the three strains in response to arsenic by a proteomic approach; strains were grown in absence of the metalloid and in presence of As(III) and As(V) sublethal concentrations and the protein separation was carried out in 2D electrophoresis gels (2D-GE). In total, 999 spots were detected, between 77 and 173 of which showed significant changes for As(III) among the three strains, and between 90 and 143 for As(V), respectively, compared to the corresponding control condition. Twenty-seven of those were identified by mass spectrometry (MS). Among these identified proteins, the ArsA [ATPase from the As(III) efflux pump] was found to be up-regulated in response to both arsenic conditions in the three strains, as well as the Co-enzyme A disulfide reductase (Cdr) in the two more resistant strains. Interestingly, in this genus the gene that codifies for Cdr is found within the genic context of the ars operon. We suggest that this protein could be restoring antioxidants molecules, necessary for the As(V) reduction. Additionally, among the proteins that change their expression against As, we found several with functions relevant to stress response, e.g., Hpf, LuxS, GLpX, GlnE, and Fur. This study allowed us to shed light into the physiology necessary for these bacteria to be able to tolerate the toxicity and stress generated by the presence of arsenic in their niche.
AB - Exiguobacterium is a polyextremophile bacterial genus with a physiology that allows it to develop in different adverse environments. The Salar de Huasco is one of these environments due to its altitude, atmospheric pressure, solar radiation, temperature variations, pH, salinity, and the presence of toxic compounds such as arsenic. However, the physiological and/or molecular mechanisms that enable them to prosper in these environments have not yet been described. Our research group has isolated several strains of Exiguobacterium genus from different sites of Salar de Huasco, which show different resistance levels to As(III) and As(V). In this work, we compare the protein expression patterns of the three strains in response to arsenic by a proteomic approach; strains were grown in absence of the metalloid and in presence of As(III) and As(V) sublethal concentrations and the protein separation was carried out in 2D electrophoresis gels (2D-GE). In total, 999 spots were detected, between 77 and 173 of which showed significant changes for As(III) among the three strains, and between 90 and 143 for As(V), respectively, compared to the corresponding control condition. Twenty-seven of those were identified by mass spectrometry (MS). Among these identified proteins, the ArsA [ATPase from the As(III) efflux pump] was found to be up-regulated in response to both arsenic conditions in the three strains, as well as the Co-enzyme A disulfide reductase (Cdr) in the two more resistant strains. Interestingly, in this genus the gene that codifies for Cdr is found within the genic context of the ars operon. We suggest that this protein could be restoring antioxidants molecules, necessary for the As(V) reduction. Additionally, among the proteins that change their expression against As, we found several with functions relevant to stress response, e.g., Hpf, LuxS, GLpX, GlnE, and Fur. This study allowed us to shed light into the physiology necessary for these bacteria to be able to tolerate the toxicity and stress generated by the presence of arsenic in their niche.
KW - arsenic
KW - Exiguobacterium
KW - polyextremophile
KW - proteomic
KW - tolerance
UR - http://www.scopus.com/inward/record.url?scp=85073121457&partnerID=8YFLogxK
U2 - 10.3389/fmicb.2019.02161
DO - 10.3389/fmicb.2019.02161
M3 - Article
AN - SCOPUS:85073121457
SN - 1664-302X
VL - 10
JO - Frontiers in Microbiology
JF - Frontiers in Microbiology
M1 - 2161
ER -