Activation of regulator ArcA in the presence of hypochlorite in Salmonella enterica serovar Typhimurium

C. E. Cabezas, A. M. Laulié, A. C. Briones, C. Pardo-Esté, D. E. Lorca, A. A. Cofré, E. H. Morales, A. Y. Mora, G. I. Krüger, S. M. Bueno, A. A. Hidalgo, C. P. Saavedra

Producció científica: Article en revista indexadaArticleAvaluat per experts

4 Cites (Scopus)


Oxidative stress is the main mechanism behind efficient disinfectants, causing damage in bacterial macromolecules. Importantly, bacteria activate resistance mechanisms in response to damage generated by oxidative stress. Strategies allowing pathogens to survive oxidative stress are highly conserved among microorganisms. Many of these strategies entail genomic responses triggered by signals transduced through Two Component Systems (TCS). Recently, we demonstrated that the TCS ArcAB (specifically ArcA) participates in bacterial responses to hypochlorite, regulating the uptake of this toxic compound and being involved in resistance and survival inside neutrophils, where hypochlorous acid abounds. Here, we demonstrated that ArcA is required in the response to oxidative stress generated by hypochlorite, independent of its cognate sensor ArcB or the Asp54 of ArcA, the only phosphorylable residue in ArcA, which is required to function as a gene regulator. Our results suggest that ArcA could have additional functions to respond to oxidative stress, independent of its regulatory activity, which might require interaction with other unknown relevant proteins.

Idioma originalAnglès
Pàgines (de-a)178-185
Nombre de pàgines8
Estat de la publicacióPublicada - de gen. 2021
Publicat externament


Navegar pels temes de recerca de 'Activation of regulator ArcA in the presence of hypochlorite in Salmonella enterica serovar Typhimurium'. Junts formen un fingerprint únic.

Com citar-ho